Aqüifero Guarani

Educação Ambiental para a sua preservação na região do Planalto dos Guimarães

Organizadores: Renato Blat Migliorini | Uriel Duarte | Maria da Anunciação Pinheiro Barros Neta

ASSOCIAÇÃO BRASILEIRA DE ÁGUAS SUBTERRÂNEAS | ABAS PROJETO FUNDO GUARANI DA CIDADANIA

EDUCAÇÃO AMBIENTAL PARA A PRESERVAÇÃO DO AQÜÍFERO GUARANI NA REGIÃO DO PLANALTO DOS GUIMARÃES

ELABORAÇÃO E COORDENAÇÃO

Prof. Dr. Renato Blat Migliorini

Departamento de Geologia Geral – Instituto de Ciências Exatas e da Terra da UFMT

Prof. Dr. Uriel Duarte

Departamento de Recursos Minerais e Hidrogeologia – Instituto de Geociências da USP

Prof^a. Dr^a. Maria da Anunciação Pinheiro Barros Neta Departamento de Teoria e Fundamentos da Educação – Instituto de Educação da UFMT

CONSULTORIA CIENTÍFICA

Prof. Dr. Antônio Brandt Vecchiato

Departamento de Geologia Geral – Instituto de Ciências Exatas e da Terra da UFMT

Prof. Dr. Prudêncio Rodrigues de Castro

Departamento de Geologia Geral – Instituto de Ciências Exatas e da Terra da UFMT

Ms. Lilian Fátima de Moura Apoitia

Secretaria de Recursos Hídricos do Estado de Mato Grosso

REVISÃO

Prof. Dr. Fernando Ximenes Tavares Salomão

Departamento de Geologia Geral – Instituto de Ciências Exatas e da Terra da UFMT

BOLSISTAS DE INICIAÇÃO CIENTÍFICA

Dener Vilela Barbosa | Marielli Wesz Vogado | Daniel Ávila Vecchiato

Introdução
Noções Sobre o Meio Ambiente
2. O Ciclo Hidrológico
3. Conceitos Básicos Sobre Recursos Hídricos Subterrâneos
4. O Aqüífero Guarani
5. Os Problemas do Uso Inadequado da Água e do Solo
6. O Aqüífero Guarani no Estado de Mato Grosso
7. Impactos Ambientais e Riscos de Degradação do Aqüífero Guarani na Região do Planalto dos Guimarães
8. Gerenciamento dos Recursos Hídricos
Glossário
Bibliografia

INTRODUÇÃO

Surgiu no Ocidente, mais precisamente na Grécia do século VI a.C., uma nova maneira de pensar e de conceber o mundo. Essa nova maneira de pensar, racional e filosófica, é considerada oposta ao pensamento mítico, que exprime na forma divina e celestial a origem pronta e acabada de todas as coisas que existem no cosmo, todo o conjunto de relações, quer dos homens entre si, quer entre o homem e a Natureza. É como se o homem tivesse se libertado das fantasias da mitologia, da história fabulosa dos deuses e semideuses para se afirmar e se desenvolver racionalmente.

Nessa época, chamada de pré-socrática ou cosmológica, os filósofos se preocuparam em conhecer principalmente por que e como as coisas existem, o que é o mundo e qual a origem, ordem e transformação da Natureza. Foi assim que apareceram nas colônias gregas da Ásia Menor, na cidade de Mileto, as primeiras manifestações de um pensamento dotado de uma compreensão racional. Os filósofos acreditavam que a explicação do princípio ou causa do mundo possibilitava a explicação da origem e as transformações dos seres humanos, pois rejeitavam a idéia de que o mundo teria nascido do nada. Para tanto, eles partiam de realidades apreendidas na experiência humana cotidiana e buscavam explicar e compreender a possibilidade de um princípio único (arkhé, que também que dizer "comando") capaz de nortear e ordenar todas as coisas do Universo em seus vários e contraditórios aspectos (Pré-Socráticos, 1999).

Nesse contexto, Tales de Mileto, que viveu no período compreendido entre o final do século VII e meados do século VI a.C., destaca-se como primeiro pensador físico grego interessado em compreender o que é a physis¹, que apresenta tantas variações.

Do pensamento de Tales, só ficaram interpretações formuladas por outros filósofos que lhe atribuíam uma idéia básica, a saber, que *a água é a origem de todas as coisas, isto é, tudo o que existe no Universo provém da água*. A physis, então, teria como único princípio esse elemento natural, presente em tudo. O autor foi inspirado a conceber o mundo dessa forma, talvez, pela observação de que a água é de fundamental importância para a manutenção da vida, pois morre aquilo a que falta alguma forma de água. Além disso, Tales de Mileto acreditava que a água poderia transformar-se em outras coisas. Em resu-

¹ A palavra physis pode ser traduzida por Natureza, mas seu significado é mais amplo. Levanta a questão da origem de todas as coisas que constituem a realidade, não aquela pronta e acabada, mas a que se encontra em movimento e transformação, a que nasce e se desenvolve.

mo, ele entendia que o surgimento da água manifesta um processo geológico: tudo estaria, em princípio, encoberto pela água, mas sua evaporação tornou possível que as coisas aparecessem. Posteriormente, ao se resfriar, torna-se densa e dá origem à terra (não ao Planeta Terra). Ao se aquecer transforma-se em vapor e ar, que retornam como chuva quando novamente esfriados. Desse ciclo (vapor, chuva, rio, mar, terra) nascem as diversas formas de vida, vegetal e animal (Pré-Socráticos, 1999).

De acordo com Chauí (1995), não há dúvida de que esse pensamento de Tales de Mileto depara-se com dificuldades de sustentação. O que são, por exemplo, o calor e o frio, de que depende o movimento da água, se é esta a origem única de todas as coisas? A busca da arkhé, isto é, a busca de um princípio único (neste caso, a água) para explicação do Universo choca-se com outras forças que, por sua vez, precisam ser enquadradas em um princípio diferente. Essa dificuldade não é exclusiva de Tales de Mileto. É da própria Filosofia, que se desenvolve tentando resolvê-la. Se Tales aparece como iniciador da Filosofia, é porque seu esforço em buscar o princípio único da explicação do mundo, não só representa o ideal mesmo da Filosofia como também forneceu-lhe o impulso para desenvolver-se.

Com efeito, a Filosofia continuou a desenvolver-se. Após o período pré-socrático ou cosmológico, que acabamos de ver na Filosofia Antiga, tivemos a Filosofia Patrística, a Filosofia Medieval, a Filosofia da Renascença, a Filosofia Moderna e a Filosofia Contemporânea.

Entretanto, para o que nos interessa neste trabalho, falaremos rapidamente sobre a Filosofia na Idade Moderna. A partir do nascimento das ciências no século XVII, os conhecimentos se dividiram em conhecimentos filosóficos e conhecimentos científicos.

A atividade filosófica, segundo Chauí (1995), capta a Filosofia como **análise** (das condições da ciência, da religião, da arte, da moral) como **reflexão** (isto é, volta da consciência para si mesma para conhecer-se enquanto capacidade para o conhecimento, o sentimento e a ação) e como **crítica** (das ilusões e dos preconceitos individuais e coletivos, das teorias e práticas científicas, políticas e artísticas). Além da análise, reflexão e crítica, a Filosofia é a busca do fundamento e do sentido da realidade em suas múltiplas formas indagando o que são, qual sua permanência e qual a necessidade interna que as transforma em outras .

A Filosofia, portanto, não é ciência². Ela apenas contribui com uma reflexão crítica sobre os conceito e metodologias científicas. "Ciências, no plural, refere-se às diferentes maneiras de realização do ideal de cientificidade, segundo os diferentes fatos investigados e os diferentes métodos e tecnologias empregados" (Chauí, 1995).

Dentre as inúmeras ciências existentes, interessa-nos mais de perto a Geologia, que é a ciência que trata da origem, história, vida e estrutura da terra em relação às rochas,

² A ciência é um conjunto de conhecimentos socialmente adquiridos ou produzidos, historicamente acumulados, dotados de universalidade, objetividade que permitem sua transmissão, e estruturados com métodos, teorias e linguagens próprias, que visam compreender e possa orientar a natureza e as atividades humanas.

incluindo as forças e processos que operam para modificá-las. Interessa-nos, mais precisamente, o ramo da Hidrogeologia, que estuda o comportamento e a distribuição das águas subterrâneas em diferentes tipos de rochas e formações, e o aproveitamento das mesmas.

No ramo da hidrogeologia, é conhecido um dos maiores reservatórios de água subterrânea do mundo, o Sistema Aqüífero Guarani, formado no Mesozóico, isto é, com idade entre 200 e 130 milhões de anos atrás. Este aqüífero está localizado nos territórios da Argentina, Brasil, Paraguai e Uruguai. Para melhorar e ampliar o conhecimento deste aqüífero, além de subsidiar o gerenciamento e preservação do mesmo, foi criado o Projeto de Proteção e Desenvolvimento Sustentável do Sistema Aqüífero Guarani.

Participam deste projeto os quatro países referidos acima, no qual o Sistema Aqüífero Guarani está situado, o Fundo Global para o Meio Ambiente (GEF), o Banco Mundial (BM), a Organização de Estados Americanos (OEA), os Governos do Reino dos Países Baixos e da Alemanha e a Agência Internacional de Energia Atômica.

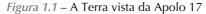
O Conselho Superior de Direção do Projeto de Proteção e Desenvolvimento Sustentável do Sistema Aqüífero Guarani, através da resolução Nº 4/2003, selecionou propostas de projetos mediante o Fundo Guarani da Cidadania, o qual, dentre outros trabalhos, escolheu o presente projeto, intitulado "Educação ambiental para a gestão do Aqüífero Guarani na região do Planalto dos Guimarães".

Este projeto tem por objetivo geral contribuir no sentido de divulgar a ocorrência do Aqüífero Guarani no Planalto dos Guimarães, tendo por objetivos específicos:

- a) Contribuir na formação de crianças e adolescentes para o problema do uso e preservação das águas subterrâneas;
- b) Divulgar o Aqüífero Guarani na região do Planalto dos Guimarães, visando a proteção do meio ambiente;
- c) Produzir e oferecer materiais pedagógicos contendo:
 - Livro para o aluno do Ensino Fundamental com informações básicas a respeito do Aqüífero Guarani e das águas subterrâneas;
 - Livro para o professor com informações básicas sobre o meio ambiente, os recursos hídricos, o Aqüífero Guarani, sobre os problemas do uso inadequado das águas subterrâneas e do solo e sobre os impactos ambientais e gestão das águas subterrâneas.
 - Curso visando a capacitação de professores de 49 Escolas Públicas Estaduais e Municipais do Ensino Fundamental, que desenvolverão o programa educativo voltado para a problemática do uso e importância das águas subterrâneas, e da preservação do Aqüífero Guarani na região do Planalto dos Guimarães – MT.

Esta publicação pretende oferecer aos professores do Ensino Fundamental, subsídios teóricos e práticos acerca do Aqüífero Guarani e das Águas Subterrâneas, distribuídos nos seguintes capítulos:

- Capítulo 1: apresenta as noções básicas sobre o meio ambiente;
- Capítulo 2: trata de como a água se move de lugar, isto é, na atmosfera, na superfície e em subsuperfície da Terra, dentro de um processo conhecido como Ciclo Hidrológico;
- Capítulo 3: resume as principais noções e idéias a respeito dos recursos hídricos subterrâneos:
- Capítulo 4: aborda de forma simplificada o conhecimento atual do Aqüífero Guarani;
- Capítulo 5: explana os problemas do uso inadequado da água e do solo
- Capítulo 6: explica o conhecimento atual do Aqüífero Guarani no Estado de Mato Grosso.
- Capítulo 7: apresenta as diversas formas de distribuição dos contaminantes no meio ambiente e os principais fatores relacionados ao risco de contaminação dos recursos hídricos, com especial atenção aos fatores relacionados ao potencial de degradação do Aqüífero Guarani no Estado de Mato Grosso.
- Capítulo 8: explica o gerenciamento dos recursos hídricos subterrâneos no Brasil e no Estado de Mato Grosso.


Esperamos que este projeto possa contribuir para a reflexão e compreensão de alunos e professores, em geral, e alunos e professores do Ensino Fundamental, em especial, sobre a importância desse tão precioso recurso natural.

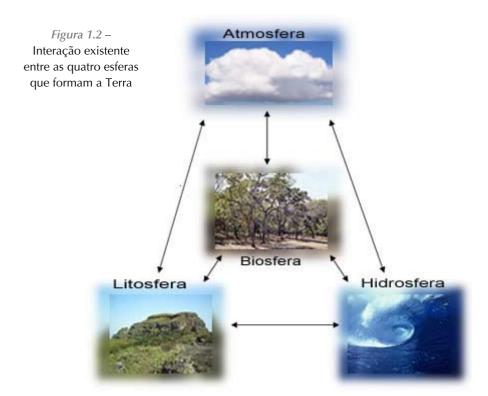
1. NOÇÕES SOBRE O MEIO AMBIENTE

Antônio Brandt Vecchiato

"Vista do espaço, a Terra é um mundojardim, um planeta de vida, uma esfera de verdes e azuis envolta numa atmosfera úmida." Anne Whiston Spirn

A Terra é azul! Disse o primeiro homem ao ver o nosso planeta do espaço sideral, o cosmonauta russo Yuri Gagarin (Figura 1.1). De fato, o nosso planeta tem a cor azul devido a grande quantidade de água existente, cerca de dois terços de sua superfície é coberto pelas águas dos oceanos, mares, lagos, rios, geleiras, calotas polares e aqüíferos formando a hidrosfera. As partes sólidas, representadas pelas rochas e solos, correspondem à litosfera. A cobertura vegetal, os animais e microorganismos constituem a biosfera. Final-

mente, a massa gasosa e de vapor d'água que envolve a terra, denominada de atmosfera, completa os quatro sistemas que formam o nosso planeta.


Esses quatro sistemas: litosfera, hidrosfera, biosfera e atmosfera se interagem, se relacionam intrinsecamente, formando um sistema maior que é o planeta Terra. Essa é a abordagem mais atual, empregada pelos geocientistas, para o estudo da Terra. A Figura 1.2 ilustra a interação existente entre as esferas que formam o planeta Terra.

A maneira tradicional de estudo da Terra enfoca de maneira separada cada uma dessas esferas, ou compartimentos, que formam nosso planeta. Assim, a atmosfera, os oceanos, ou mesmo uma cadeia de montanhas, é estudado de maneira isolada. No entanto, isso não corresponde à realidade. O fato é que existe uma constante troca de matéria e energia entre as diversas esferas, ou sistemas que compõe a Terra.

O tratamento integrado no estudo do nosso planeta, pode ser denominado de enfoque sistêmico da dinâmica terrestre e tem, na Teoria dos Sistemas, a sua base científica e metodológica.

O termo sistema deve ser entendido como um conjunto de unidades com relações entre si. A palavra conjunto implica que as unidades possuem propriedades comuns. O estado de cada unidade é controlado, condicionado, ou dependente do estado das outras unidades.

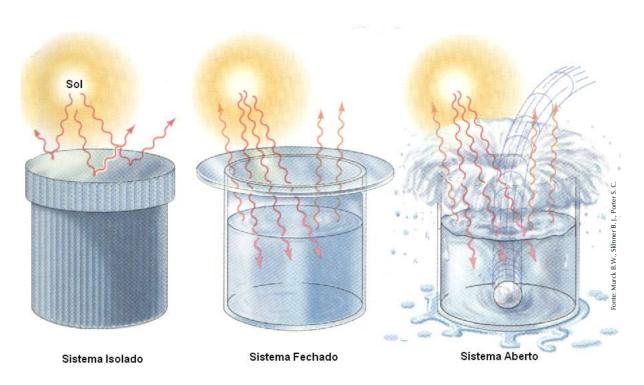
Assim, pode-se perceber que existe nos sistemas uma organização em virtude das inter-relações existentes entre as unidades, e o seu grau de organização permite que assuma a função de um todo que é maior que a soma de suas partes.

Por estas definições, pode-se também perceber que os sistemas sempre devem ter:

- elementos ou unidades: que são as suas partes componentes;
- relações: existem inter-relações entre os elementos integrantes do sistema, um dependendo dos outros, através de ligações que denunciam as trocas de matéria e/ou energia;
- atributos: são as qualidades que se atribuem aos elementos ou ao sistema, a fim de caracterizá-los. Conforme o sistema pode-se selecionar algumas qualidades que melhor servem para descreverem as suas partes. Assim, os atributos podem se referir ao comprimento, largura, área, volume, composição, freqüência observada, e muitas outras qualidades;
- entrada (input): constitui o que o sistema recebe. Por exemplo, um rio recebe água e sedimentos, um animal recebe alimentação, a Terra recebe energia solar, uma indústria recebe matéria prima e energia para o seu funcionamento. Cada sistema é alimentado por determinados tipos de entradas;
- saída (output): as entradas recebidas pelo sistema sofrem transformações em seu interior e, depois, são encaminhadas para fora. Todo produto fornecido pelo sistema representa um tipo de saída.

Ao se adotar o enfoque sistêmico como método de trabalho ou estudo, uma grande dificuldade está em identificar os elementos, seus atributos e suas relações a fim de estabelecer (delinear) com clareza a extensão abrangida pelo sistema em foco. Praticamente, todos os sistemas que ocorrem na natureza não atuam de modo isolado, mas funcionam dentro de um ambiente e fazem parte de um conjunto maior. Assim, um rio pode ser considerado um sistema, no entanto, pode-se considerar que o corpo d'água, as rochas e os sedimentos de fundo, as suas margens, formam sistemas menores que, juntos formam o rio. Por outro lado, este rio pode fazer parte de um sistema maior composto por um conjunto de rios, formando uma bacia hidrográfica, que, por sua vez, pode fazer parte de uma bacia maior ainda, que, juntamente com os outros corpos d'água formam um sistema ainda maior: a hidrosfera, que com as outras esferas formam o sistema Terra, que por sua vez, faz parte do sistema solar e, assim por diante.

Esse conjunto maior, no qual está inserido o sistema particular que se está estudando, pode ser denominado de universo, o qual compreende o conjunto de todos os fenômenos e eventos que, através de todas as suas mudanças e dinamismo, apresentam repercussões no sistema focalizado, e também de todos os fenômenos e eventos que sofrem alterações e mudanças por causa do comportamento do referido sistema particular. Dentro do universo podem-se classificar os primeiros como sistemas antecedentes ou controladores e os seguintes como sistemas subseqüentes ou controlados. Entretanto, deve-se entender que não existem encadeamentos lineares, seqüenciais, entre os sistemas antecedentes, o sistema que se está estudando e os sistemas subseqüentes. Através do mecanismo de re-


troalimentação (feedback), os sistemas subsequentes podem voltar a exercer influências sobre os antecedentes, numa perfeita interação entre todo o universo.

Os sistemas podem ser classificados, de acordo com o critério funcional em três tipos:

- a) sistemas isolados: são aqueles que não sofrem nenhuma perda e nem recebem energia e matéria do ambiente que os circundam;
- b) sistemas fechados: quando há troca de energia (recebimento e perda), mas não de matéria. O planeta Terra pode ser considerado um sistema fechado, pois recebe energia do Sol e também a perde por meio de radiação para o espaço, mas não recebe matéria de outros planetas ou astros, a não ser em proporções insignificantes, praticamente nulas;
- c) sistemas abertos: são aqueles nos quais ocorrem constantes trocas de energia e matéria, tanto recebendo como perdendo. São os sistemas mais comuns, podendo ser exemplos: as esferas terrestres, as bacias hidrográficas, os seres vivos, as cidades, indústrias, etc.

A figura 1.3 apresenta exemplos de sistema isolado, sistema fechado e sistema aberto.

Figura 1.3
Os três tipos básicos de sistemas: Sistema Isolado, Sistema Fechado e Sistema Aberto

O fato de a Terra ser um sistema fechado apresenta algumas conseqüências muito importantes para a manutenção das atividades econômicas de nossa sociedade e, até mesmo, para a própria manutenção da vida no planeta.

- 1. A quantidade de matéria em um sistema fechado é fixa e finita. Isso permite deduzir que os recursos minerais são limitados e finitos. Portanto, deve-se ter cuidado com a sua exploração, procurando usá-los com cautela, evitando desperdícios desnecessários. Outra importante questão diz respeito ao fato de que, ao serem explorados, os recursos naturais geram restos, rejeitos e lixo, às vezes de composição perigosa para a saúde, em uma quantidade cada vez maior, se tornando em um grande problema. Onde colocar o lixo produzido? Como evitar que este lixo não contamine o solo e os mananciais de água?
- 2. Quando impactos são provocados em uma parte do sistema fechado, o resultado destes impactos podem eventualmente afetar outras partes do sistema. Apesar da Terra ser considerado um sistema fechado, as inúmeras partes que o compõe são sistemas abertos. Estes sistemas se encontram em um delicado estado de equilíbrio dinâmico. Quando algum distúrbio ocorre em um destes sistemas, todo o resto procura restabelecer o estado de equilíbrio. Isto pode provocar uma reação em cadeia de eventos que irão afetar vários sistemas, muitas vezes em locais distantes daquele em que o distúrbio ocorreu. O fato desencadeador deste processo pode ser tanto natural quanto provocado por alguma ação humana. Um exemplo natural pode ser a erupção de um vulcão na Indonésia que, ao lançar cinzas e poeira na atmosfera, pode provocar mudanças climáticas na América do Sul, no México, Califórnia e, até mesmo no Oeste da África, afetando o preço de produtos agrícolas. Outro exemplo: a ocorrência de um terremoto no assoalho oceânico pode provocar o surgimento de ondas gigantes (tsunamis), que levam morte e destruição em locais muito distantes do epicentro do tremor. A ação do homem também pode desencadear mudanças que afetam o equilíbrio natural dos sistemas. A queima de combustíveis fósseis pode provocar buracos na camada de Ozônio da atmosfera, provocando o aumento da temperatura, a diminuição das calotas polares, provocando mudanças globais no clima. Outra consequência da queima de combustíveis fósseis pela indústria é o surgimento das chuvas ácidas, prejudiciais para a vegetação e saúde, que podem ocorrer a muitos milhares de quilômetros distantes das áreas industriais.

Por essas implicações denota-se que as ações do homem interferem no ambiente natural, modificando a sua dinâmica. É evidente que com o desenvolvimento tecnológico, essas interferências são cada vez maiores, sendo fundamental o estabelecimento de critérios que evitem ou mitiguem os impactos negativos decorrentes dessas atividades.

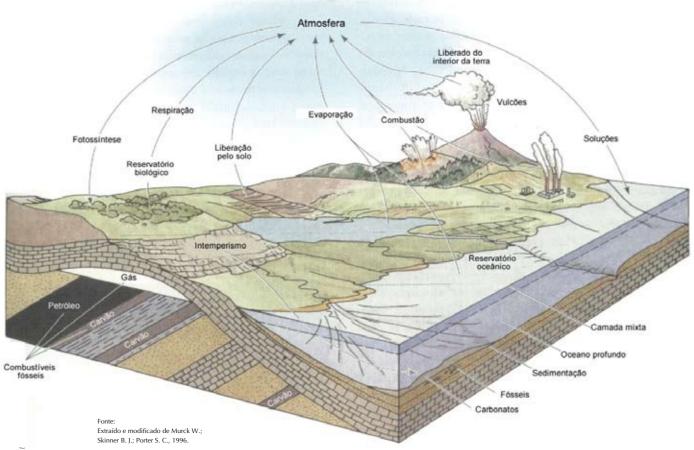
Nesse sentido, a tomada de medidas preventivas ou o enfrentamento de problemas já instalados, exigem uma visão da interferência humana no ambiente sob uma perspec-

tiva de relação e de mudanças (em quantidade e qualidade). Uma proposta apresentada é o estabelecimento de instrumentos de planejamento ambiental desenvolvidos a partir de um enfoque sistêmico da dinâmica do ambiente, considerando seus processos de acordo com as características originais do meio e suas alterações decorrentes das atividades humanas.

Observa-se que cada um dos processos existentes, ao ser alterado por uma determinada atividade, é acelerado ou retardado, podendo até mesmo ser eliminado ou surgir um novo processo no local. Os cientistas, ao analisarem os processos naturais e/ou induzidos, têm demonstrado que na dinâmica ambiental é fundamental o entendimento dos processos que ocorrem no meio físico, onde o meio biótico e o meio antrópico se integram. Isto nem sempre é contemplado, acarretando sérios equívocos no uso e ocupação do território, muitas vezes deflagrando intensa degradação ambiental e/ou induzindo a ocorrência de tragédias em áreas de risco, com perdas materiais e, infelizmente de vidas humanas.

Para um melhor entendimento, torna-se importante estabelecer o conceito de meio ambiente: que consiste em um determinado espaço em que ocorre uma interação entre os meios físico, biótico e antrópico, organizados em um sistema de relações extremamente complexas e sensíveis às modificações de seus elementos constituintes. Assim, o meio ambiente é composto, ao mesmo tempo, por um espaço e por um sistema de relações, que se desenvolvem nesse espaço, por meio de trocas de energia e matéria, e cujas alterações podem desencadear reações, modificando sua dinâmica.

Então, por este conceito, existem três níveis ou sistemas distintos – o físico, o biótico e o antrópico – constituindo o meio ambiente e se relacionando através de fluxos de matéria e de energia, porém obedecendo as suas próprias leis, ou seja:

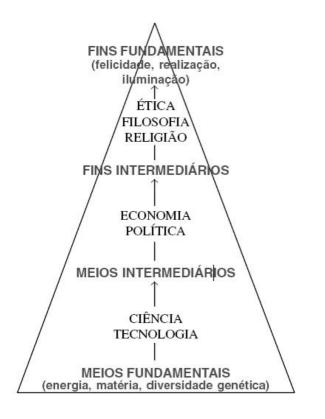

- a) o sistema ou meio físico: englobando todo o planeta físico, sua atmosfera (ar), hidrosfera (água) e litosfera (solos e rochas), que obedecem às leis da física e da química:
- b) o sistema ou meio biótico: compreendendo a biosfera, com todas as espécies de vida, que seguem as leis da física, química, biologia e ecologia;
- c) o sistema ou meio antrópico: formado pela sociosfera, representada pelas formas de governos, economias, artes, religiões e culturas e pela tecnosfera, que compreende o mundo das máquinas e construções criadas pelo Homem, que obedecem as leis da física, da química, da biologia, da ecologia e também, as leis criadas pelo Homem.

A preservação do meio ambiente é, hoje, uma das maiores preocupações do homem. No entanto para ser efetiva, torna-se importante uma tomada de consciência coletiva a respeito das chamadas questões ambientais, por meio do desenvolvimento de conhecimento, de atitudes e de habilidades necessárias à preservação e melhoria da qualidade ambiental. Para tanto, reiteramos algumas idéias, que acreditamos serem importantes para este contexto:

Na natureza a matéria não pode ser criada, nem destruída, só transformada. Em outras palavras, a matéria que existe na Terra permanece no planeta, sob contínua transformação movida pela energia do Sol e da própria Terra. Como já vimos, o planeta Terra pode ser considerado um sistema fechado. No entanto, energeticamente, é um sistema aberto. O material necessário para a manutenção da vida (água, oxigênio, carbono, nitrogênio, entre outros), através dos ciclos biogeoquímicos, mantém a sua pureza e a sua disponibilidade para os seres vivos. Esses ciclos biogeoquímicos combinados formam um complexo mecanismo de controle que mantém as condições necessárias e essenciais para a autosustentação dos seres vivos. Na natureza, os organismos e o ambiente interagem promovendo trocas de materiais e energias por meio das cadeias alimentares e ciclos biogeoquímicos. Como exemplo de um desses ciclos pode-se citar o ciclo do Carbono, representado na figura 1.4: observa-se que o carbono circula constantemente pelos seres vivos, o solo e a atmosfera, em muitas formas diferentes. O Dióxido de carbono presente na atmosfera é usado pelas plantas na fotossíntese para a produção de carboidratos e proteínas. As plantas são comidas por animais. Esses animais contêm carbono (carboidratos e proteínas). Os carboidratos são usados pelos seres vivos para produzir energia e, através da respiração, liberam novamente o Dióxido de carbono para a atmosfera. Há ainda a produção de dejetos e, a morte. As plantas e os animais mortos e os dejetos orgânicos sofrem a ação dos organismos decompositores que produzem Dióxido de Carbono para a atmosfera. As plantas e os animais mortos podem também armazenar o carbono sob a forma de combustíveis fósseis (carvão e petróleo). A queima de combustíveis pelo homem produz Dióxido de carbono para a atmosfera, que será usado pelas plantas para realizar a fotossíntese, fechando o ciclo.

Importante: o dióxido de carbono presente na atmosfera ajuda a aquecer a terra, pois retém o calor do sol, no que é chamado efeito estufa. Desde o início da era industrial, a queima de combustíveis fósseis aumentou bastante a quantidade de dióxido de carbono na atmosfera. É muito difícil prever as conseqüências desse acúmulo de dióxido de carbono sobre a temperatura média da Terra. Existem muitas controvérsias, porém muitos cientistas prevêem que as temperaturas irão subir, derretendo as calotas polares, inundando as regiões costeiras e produzindo grandes alterações climáticas. Para evitar que a concentração de dióxido de carbono aumente mais ainda, deve-se dar preferência a fontes de energia renováveis, usar a energia com maior eficiência, evitar os desmatamentos desnecessários e promover o reflorestamento.

Figura 1.4 – Ciclo do carbono



- A adoção da idéia de sistemas complexos repousa no princípio de que "tudo está conectado com tudo". Com o objetivo de melhor entender o mundo, a mente humana o divide em partes. No entanto, o mundo é um todo único. Não existe uma linha divisória clara entre matemática e física, física e química, terra e água, água e ar, homem e natureza, exceto as linhas, as fronteiras, estabelecidas pela mente humana. Assim sendo, o meio ambiente deve ser enfocado de uma maneira integrada, sob uma visão sistêmica.
- O problema do crescimento populacional e capacidade de suporte consideram que as populações tendem a crescer exponencialmente quando as condições são favoráveis. Cada população tem o seu potencial para crescer exponencialmente, explosivamente. No entanto, o número de organismos que pode ser sustentado por determinados recursos naturais é limitado, em função da taxa de produção desses recursos. Tal concepção é chamada de capacidade de suporte. No entanto, urge refletir que a capacidade de suporte para a vida humana e para a sociedade é bastante complexa, dinâmica e varia conforme a maneira como o homem usa os recursos

naturais. Ela é sempre definida pelo seu fator mais limitante, e pode ser melhorada ou degradada pelas atividades humanas. É importante considerar que a sua restauração é muito mais difícil que a sua conservação.

A idéia sobre o desenvolvimento ambientalmente sustentável apóia-se na premissa de que o desenvolvimento econômico e o bem estar da humanidade dependem dos recursos da Terra. O desenvolvimento econômico basicamente considera a geração de riqueza, sem a qual a atividade econômica não pode ocorrer. Porém, o sistema produtivo do Homem, pelo qual ele gera a riqueza, requer: terra, trabalho, capital, tecnologia, habilidade, matéria prima, água, infra-estrutura e gerenciamento. Em suma, o desenvolvimento econômico deve ocorrer acompanhado de uma atitude de responsabilidade e proteção para com a Terra. A figura 1.5 apresenta o sistema econômico como uma pirâmide, na qual os recursos da Terra estão na base e os objetivos humanos fundamentais no topo. Através da ciência e da tecnologia o homem transforma os recursos naturais para satisfazer as suas necessidades. A política e a economia viabilizam a produção da riqueza que, adotando-se valores morais em sua distribuição, oportuniza a finalidade precípua de uma realização integral.

Figura 1.5 – Visão do sistema econômico como uma pirâmide segundo Herman Daly

Fonte: Secretaria do Meio-Ambiente do Estado de São Paulo. 1997.

- A concepção de um desenvolvimento socialmente responsável não é centrada na produção de riquezas, mas sim nas pessoas. O importante é valorizar a iniciativa criativa das pessoas, o seu desenvolvimento educacional e cultural. O objetivo fundamental é o seu bem-estar material e espiritual.
- É importante a consciência de que o Homem não entende completamente como a Terra funciona. O Homem nem sequer compreende o quanto não compreende. "Só sei que nada sei", ponderou o filósofo Sócrates. No entanto, é comum o Homem tomar decisões sob sérias incertezas, muitas vezes provocando degradações e acidentes de proporções catastróficas. Deve-se ter em mente que quando os resultados podem ser devastadores e irreversíveis, os riscos devem ser cuidadosamente avaliados. Portanto, em situações de incerteza, os procedimentos adequados devem ser: a avaliação cuidadosa e a experimentação, acompanhada de uma constante avaliação dos resultados e a sempre boa vontade de mudar de estratégia, quando necessário.
- Por último, a idéia da sacralização deve ser seriamente considerada. Deve-se assumir uma postura caracterizada pela atitude de reverência para com a Terra. Embora, às vezes, não se possa perceber prontamente a finalidade de alguma coisa na natureza, não se pode descartá-la como se não existisse. Nada na natureza tem de ser justificado, em relação ao Homem, para ter o direito de existir. Afinal, o Homem faz parte da Natureza. A grande verdade é que não possuímos a Terra, a Terra é que nos tem.

Os índios Guaranis entendiam perfeitamente essa realidade, como podemos apreender dessa lenda:

"No início era o nada. Os deuses esconderam as tintas nas árvores, nos animais e na terra, e guardaram para si o encantamento da tapiragem nas aves. E esperaram... Ainda era tudo escuro, e ao mesmo tempo que foi criado o Sol e a Lua, Kúat e Iaê, os deuses da sabedoria, mostraram a natureza como horizonte do homem, para que convivendo com ela, aprendesse a amá-la e respeitá-la. A pele pintada para dar vida à vida, cor às cores, para mostrar a alegria do existir e a razão do viver. Através da mutação das penas, um pouco da incomparável beleza da aves saiu do céu. O sonho dos homens de voar nunca se realizou materialmente, mas em espírito eles alçaram vôo junto aos deuses, e os deuses sorriam, acreditando no homem..."

"Singular e assombroso o destino de um povo como os Guarani! Marginalizados e periféricos, nos obrigam a pensar sem fronteiras. Tidos como parcialidades, desafiam a totalidade do sistema. Reduzidos, reclamam cada dia espaços de liberdade sem limites. Pequenos, exigem ser pensados com grandeza. São aqueles primitivos cujo centro de gravitação já está no futuro. Minorias, que estão presentes na maior parte do mundo." (Bartomeu Meliá)

2. O CICLO HIDROLÓGICO

Renato Blat Migliorini

A quantidade de água no planeta Terra parece algo infindável. No entanto, esse volume de água foi estimado em torno de 1.454375 103 Km3 (The Open University, 2000).

Pela ação do sol, dos ventos e da ação da gravidade, toda essa água encontra-se em constante movimento. A água evapora-se dos oceanos, rios, lagos e da superfície terrestre. A quantidade de água evaporada varia de lugar para lugar, sendo que a maior parte está perto do Equador, onde a radiação solar é mais intensa. Quando as condições atmosféricas são adequadas, o vapor de água se condensa, formando as chuvas. As gotas de água das chuvas, orvalho, neve e gelo precipitam-se no continente, no mar, ou podem reevaporar antes mesmo de chegar à superfície.

As precipitações que caem na superfície da terra comportam-se de diferentes maneiras. Uma parte da água irá escoar pela superfície da terra, podendo alimentar os cursos d'água, lagos e mares. Se o terreno, constituído por solo e/ou rocha, for poroso, uma parcela dessa água se infiltra no terreno, e vai fazer parte de uma operação conhecida por percolação. A água que adere nas partículas do solo, umidecendo-o, pode ser retirada pelas raízes das plantas, parte dela evapora, e o que sobra, permanece no solo. Uma porção da água utilizada pela planta é transpirada, que, em conjunto com a água evaporada, constitui um processo conhecido como evapotranspiração.

O excesso de água retida no solo infiltra-se por gravidade para maiores profundidades, acumulando-se a uma determinada profundidade, tornando camadas do solo ou da rocha totalmente saturadas de água. O topo da zona de saturação é chamado de nível d'água ou "lençol freático" e, a água acumulada, de água subterrânea. A água subterrânea percola pelos espaços vazios do solo ou rocha por dias, semanas, anos, ou milhões de anos, até as áreas de descargas naturais que são as nascentes, os rios, os lagos e os oceanos, e as descargas artificiais que são os poços. Portanto, as águas que ocorrem nos rios têm sua origem nas chuvas, podendo ser formadas tanto por escoamento superficial quanto por escoamento subterrâneo.

A evaporação não é limitada a corpos de água abertos como os oceanos, lagos, rios e reservatórios. As precipitações interceptadas pelas folhas e outras superfícies vegetais também podem evaporar, como as águas de áreas alagadas em depressões da superfície da terra (várzeas, pantanos e mangues) ou umidade do solo de subsuperfície. Também, pode ocorrer evaporação direta da água subterrânea quando o nível da água (lençol freático) estiver próximo da superfície.

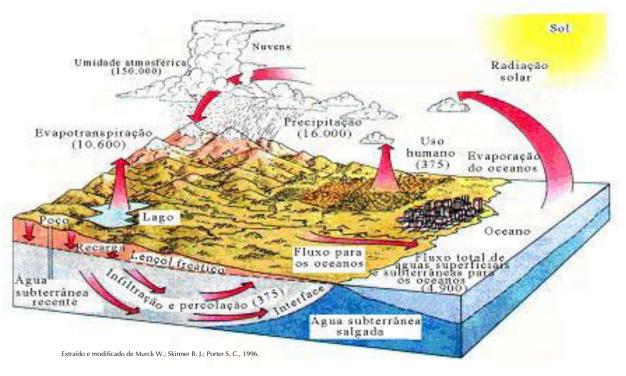


Figura 2.1. Ciclo Hidrológico

Dessa forma, pode-se afirmar que a água existente no planeta Terra, tanto na superfície dos terrenos, como em profundidade, ou na atmosfera, movimenta-se continuamente. Todo esse movimento da água, que auxilia no seu processo de renovação, é conhecido como Ciclo Hidrológico, conforme está ilustrado na figura 2.1.

Segundo dados da The Open University (2000), o nosso Planeta apresenta 1.454.375 milhões de km3 de água. Deste total:

- 94,2% (1.370.000 103 km3) é de água salgada, dos oceanos e mares;
- 4,1% (60.000 103 Km3) é água subterrânea;
- 1,7% (24.000 103 Km3) é água das calotas polares;
- 0,008% (125 103 Km3) é água doce de lagos;
- 0,01% (155 103 Km3) é água salgada de lagos;
- 0,005% (80 103 Km3) é a umidade do solo;
- 0,001% (14 103 Km3) é água da atmosfera;
- 0,0007% (103 Km3) é água dos rios.

Esses números nos permitem a seguinte consideração: retirando a água dos mares e oceanos, que é salgada, e a água congelada dos pólos, que é de difícil acesso ao homem, a água subterrânea é a grande reserva estratégica de água do Planeta.

O tempo médio que a água permanece em cada uma das partes do ciclo hidrológico, ou local de armazenamento, antes de mover-se para outra parte, é conhecido como tempo de residência. Segundo dados da The Open University (2000), o tempo de residência das águas dos oceanos é de cerca de 3.000 anos, das águas subterrâneas é de duas semanas a 10.000 anos, das calotas polares é de 10 a 10.000 anos, das águas dos lagos é de cerca de 10 anos, da umidade do solo é de duas semanas a um ano, da atmosfera é de cerca de 10 dias e dos rios é de cerca de duas semanas.

A figura 2.1 ilustra o tempo de residência das águas subterrâneas, note que as águas se infiltram pelo solo, nas áreas de recarga, e percolam no solo e em determinadas formações geológicas até as áreas de descarga. É interessante observar na figura 2.1, que o rio é efluente, isto é, ele recebe água do aqüífero. Os rios que doam água para o aqüífero são rios influentes.

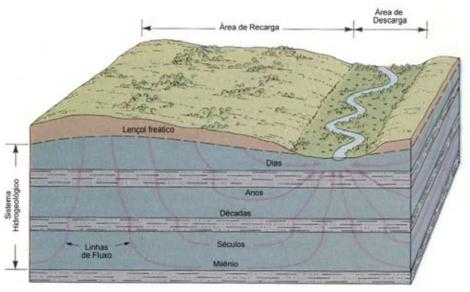


Figura 2.2 – Tempo de residência das águas subterrâneas

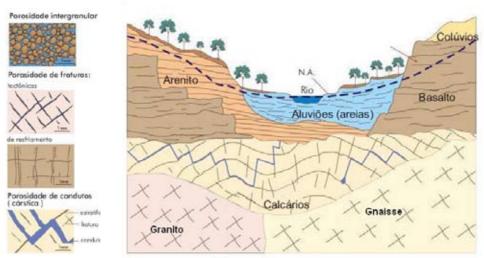
Extraído e modificado de Murck W.; Skinner B. J.; Porter S. C., 1996.

"Todos os rios correm para o mar, no entanto, o mar não está cheio; do lugar de onde os rios vêm, é para lá que eles retornam". Eclesiastes 1:7

3. CONCEITOS BÁSICOS SOBRE RECURSOS HÍDRICOS SUBTERRÂNEOS

Renato Blat Migliorini

Este capítulo tem por objetivo apresentar as características gerais e definir os principais conceitos referentes aos recursos hídricos subterrâneos, que tem na **Hidrogeologia** a área do conhecimento da Geologia, que estuda as leis que condicionam e regulam, a ocorrência, a distribuição, o movimento e aproveitamento das águas subterrâneas. Também estuda o comportamento dos aqüíferos conforme os tipos de rochas e formações, além de se preocupar com o gerenciamento, contaminação e remediação que o homem pode dar a estes aqüíferos.


As **águas subterrâneas** são as águas armazenadas no subsolo, elas preenchem os espaços vazios dos solos, sedimentos e das rochas. Nos solos, sedimentos e nas rochas sedimentares estes espaços vazios correspondem aos poros, enquanto que nas rochas cristalinas (ígneas e metamórficas), os espaços vazios são representados pelas fraturas das mesmas.

A figura 3.1 ilustra os tipos de porosidade:

- A porosidade intergranular pode ser encontrada nos colúvios, aluviões e arenitos;
- A porosidade de fratura causada por esforços tectônicos, pode ser encontrada nos calcários, granitos e gnaisses;
- A porosidade de fratura causada pelo resfriamento das rochas pode ser encontrada nos basaltos;
- A porosidade de condutos ou porosidade cárstica pode ser encontrada nos calcários.

As melhores condições de armazenamento e circulação das águas subterrâneas ocorrem nas rochas sedimentares (arenitos), formando extensos aqüíferos, onde ocorrem as melhores condições de armazenamento e circulação das águas subterrâneas. Nas rochas cristalinas (granitos, gnaisses, micaxistos, filitos, etc), que formam a maior parte da crosta terrestre, as fraturas são geralmente muito pequenas, não possibilitando boas condições de armazenamento e circulação das águas subterrâneas. As melhores condições aqüíferas ficam restritas às zonas de fratura e ao manto de alteração. É bom salientar que o manto de alteração é o material que sofreu intemperismo, isto é, sofreu decomposição e desintegração da rocha original, e que recobre a rocha fresca. O manto de alteração é parte do solo, constituindo um de seus horizontes.

Figura 3.1 – Tipos de porosidade

Extraído e modificado de Teixeira W. et al, 2000.

A maior parte das águas subterrâneas tem origem meteórica, isto é, são provenientes das águas precipitadas da atmosfera. Uma pequena parte pode ter origem juvenil, isto é, são produzidas pelas emanações magmáticas, e, outra pequena parte, pode ter origem conata, isto é, aprisionadas pelas rochas no momento de sua formação.

As experiências têm mostrado que as águas subterrâneas ocorrem em duas porções distintas do terreno, a primeira é a zona não saturada ou zona de aeração e a segunda é a zona saturada ou zona de saturação, conforme ilustrado na figura 3.2.

Na **zona não saturada (ZNS) ou zona de aeração**, os interstícios, ou vazios do solo, do sedimento ou da rocha estão ocupados por água e ar.

A zona não saturada apresenta características peculiares como:

- 1) Presença de uma fase contínua gasosa, isto é, ocorre a presença de gases (principalmente oxigênio e gás carbônico) na zona não saturada;
- 2) Pressão negativa da água, isto é, a água fica presa nos poros e os poços não enchem de água nesta zona;
- 3) Movimento da água subterrânea predominantemente vertical e contínuo;
- 4) É ativa do ponto de vista geoquímico e bioquímico, isto é, ocorrem nessa zona reações geoquímicas e bioquímicas;
- 5) É onde ocorre a retenção de poluentes em grande escala, mediante processos físicos, químicos e biológicos. Estes processos são: diluição, filtração, reações de absorção e adsorção, solução, precipitação, hidrólise, transformações bioquímicas e geoquímicas, troca catiônica e volatização.

A água que percola no solo ou rocha é, em grande parte, retida na zona não saturada. Somente o excedente da capacidade de retenção da formação geológica é que percola pelos vazios, sob ação da gravidade, indo alimentar a **zona saturada (ZS)**. Nesta zona, todos os vazios do solo ou da rocha estão completamente preenchidos de água. O limite superior da zona saturada é denominado de **nível d' água**, nesta posição, a pressão hidrostática é igual à pressão atmosférica. Quando o nível d' água atinge a superfície do terreno dá origem a uma fonte ou nascente, que alimenta os cursos d'água (córregos, lagos e rios), os rios também podem ser alimentados diretamente pelas águas subterrâneas (rios efluentes). Quando a perfuração de um poço atinge o nível d' água, a água subterrânea cairá dentro do poço por gravidade, preenchendo-o até o nível d' água.

Acima do nível d' água existe a **franja capilar**, que é a porção do terreno na qual a água fica suspensa preenchendo os vazios do solo ou rocha pela ação de capilaridade, isto é, a água fica retida por uma pressão produzida nos vazios do solo ou rocha, estendendo-se do nível de saturação até o limite de ascensão capilar. Esse limite de ascensão capilar depende do tipo do terreno, e sua intensidade aumenta com a diminuição do índice de vazios, podendo variar de alguns milímetros, nos solos arenosos, até vários metros, nos solos finos e/ou argilosos.

Uma formação geológica (rocha) que tenha capacidade de armazenar e transmitir quantidades significativas de água subterrânea recebe o nome de **aqüífero**.

Para a formação geológica ter a capacidade de armazenar água subterrânea, terá de possuir porosidade (espaços vazios existentes entre as partículas da rocha), e para ter a capacidade de transmitir água subterrânea, terá de ter permeabilidade (propriedade de um meio, que indica a maior ou menor facilidade à passagem da água através dele).

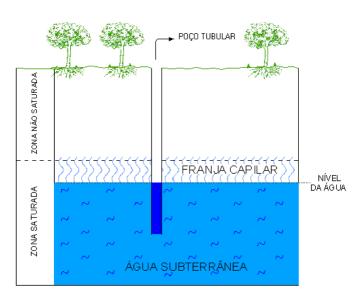


Figura 3.2 – Perfil hídrico do solo

Quando uma camada aqüífera está confinada entre camadas rochosas praticamente impermeáveis, isto é, camadas confinantes, a água nela contida fica sujeita a uma pressão maior que a força gravitacional. Nestas condições, o aqüífero é chamado de aqüífero confinado.

Assim, para que uma camada seja confinante é necessário que tenha pouca ou nenhuma permeabilidade e que esteja recobrindo uma camada permeável. As camadas confinantes são subdivididas em aquitardes, aquicludes e aquifuges:

Aqüítarde: Formação geológica pouco porosa e pouco permeável. Suas condições de armazenamento e circulação de águas subterrâneas são limitadas. Por exemplo: misturas de siltitos, areias finas argilosas e argilas arenosas.

Aqüíclude: Formação geológica de elevada porosidade, porém, de baixa permeabilidade. Por exemplo: argilas, argilitos e folhelhos.

Aqüífuge: Formação geológica absolutamente impermeável, não armazena nem transmitem água subterrânea. Por exemplo: granitos, gnaisses e basaltos sem alteração e sem fraturas.

Os aqüíferos são assim, classificados como do tipo livre ou confinado conforme ilustra a figura 3.3.

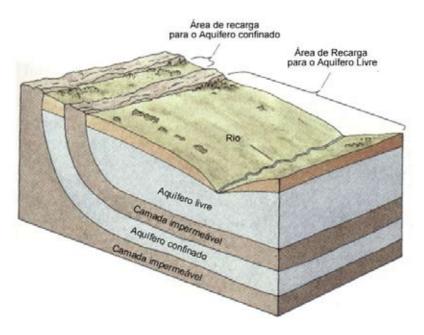


Figura 3.3 – Tipos de Aqüíferos

Nos **aqüíferos livres**, o nível do lençol freático corresponde à superfície superior da zona saturada. O lençol freático encontra-se sob ação da força da gravidade e da pressão atmosférica. O nível d' água encontrado dentro de um poço perfurado em um aqüífero livre corresponde ao nível de saturação do aqüífero.

Como o próprio nome diz, os **aqüíferos confinados** estão confinados por estratos sobrejacentes relativamente impermeáveis. Assim, a água subterrânea estará confinada sob pressão maior que a pressão atmosférica. Se um poço penetrar tal aqüífero, o nível d'água subirá acima da camada confinante, até o nível de equilíbrio com a pressão atmosférica. Se a pressão for suficiente para elevar o nível d'água acima da superfície do terreno, diz-se que o poço é artesiano.

Existem dois tipos especiais de armazenamento e circulação das águas subterrâneas, originando os aquíferos suspensos (figura 3.4) e os aquíferos cársticos (figura 3.5).

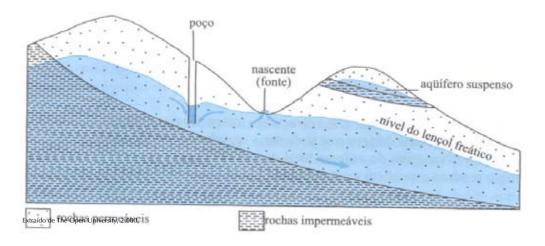
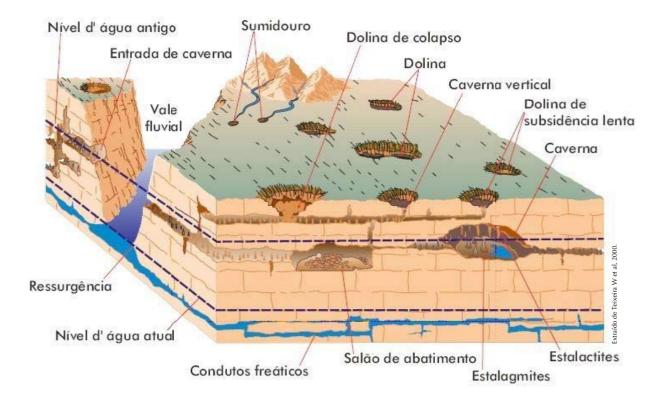



Figura 3.4 – Aqüífero suspenso

O **aqüífero suspenso** é um caso especial de aqüífero livre, onde uma camada relativamente impermeável, represa pequenos volumes de água subterrânea na zona não saturada.

O aqüífero cárstico é uma forma especial de armazenamento e circulação das rochas solúveis em água, principalmente as rochas calcárias, onde as águas percolam dissolvendo a rocha, ampliando suas características de porosidade e permeabilidade, podendo formar grandes cavernas e canais por onde circulam verdadeiros "rios subterrâneos".

Figura 3.5 – Aqüífero Cárstico

De uma maneira geral, as melhores condições de armazenamento e circulação das águas subterrâneas ocorrem nas rochas sedimentares como os arenitos, formando extensos reservatórios de águas subterrâneas. Estas rochas cobrem aproximadamente 40% do Brasil; no restante, predominam as rochas cristalinas, como os granitos e gnaisses. Nestas rochas, as condições de armazenamento e circulação das águas subterrâneas são limitadas; as melhores condições ficam restritas às zonas de fraturas e/ou manto de alteração (material rochoso que sofreu decomposição e alteração, e que recobre a rocha original).

4. O AQÜÍFERO GUARANI

Renato Blat Migliorini

O Aqüífero Guarani é um grande reservatório de água subterrânea e está localizado na América do Sul, abrangendo o Brasil, Argentina, Paraguai e Uruguai.

Sua extensão é de 1.19.500 Km2, sendo que aproximadamente 70% encontra-se em território brasileiro, conforme pode ser visto no quadro 1. As zonas de afloramento constituem cerca de 12,8% da superfície total do aquífero, ou seja, 153.000 Km2 (Figura 4.1).

Quadro 4.1 - Extensão do Aqüífero Guarani na América do Sul

Países	Área em Km2	Área em %	Volume estimado de água em Km3
Brasil	839.800	70,2	32.551
Argentina	225.500	18,9	8.740
Paraguai	71.700	6,0	2.779
Uruguai	58.500	4,9	2.267
Total	1.196.500	100,0	46.337

Fonte: modificado de Araújo et al. (1995); ANA (2001); INDEC (2002); DGEEC (2002); INE (2002); IBGE (2003) apud Borghetti et al., 2004.

No Brasil, o Aqüífero Guarani ocorre nos estados de Mato Grosso, Mato Grosso do Sul, Rio Grande do Sul, São Paulo, Paraná, Goiás, Minas Gerais e Santa Catarina, conforme descriminado no quadro abaixo:

Quadro 4.2 – Áreas abrangidas pelo Aqüífero Guarani no Brasil.

ESTADOS	Área em Km2	Área em % do Total	Área em % do Brasil
MS	213.200	17,8	25,4
RS	157.600	13,2	18,8
SP	155.800	13,0	18,6
PR	131.300	11,0	15,6
GO	55.000	4,6	6,5
MG	51.300	4,4	6,1
SC	49.200	4,1	5,9
MT	26.400	2,2	3,1
Brasil	839.800	70,3	100

Fonte: modificado de Araújo et al. (1995); ANA (2001); IBGE (2003) apud Borghetti et al., 2004.

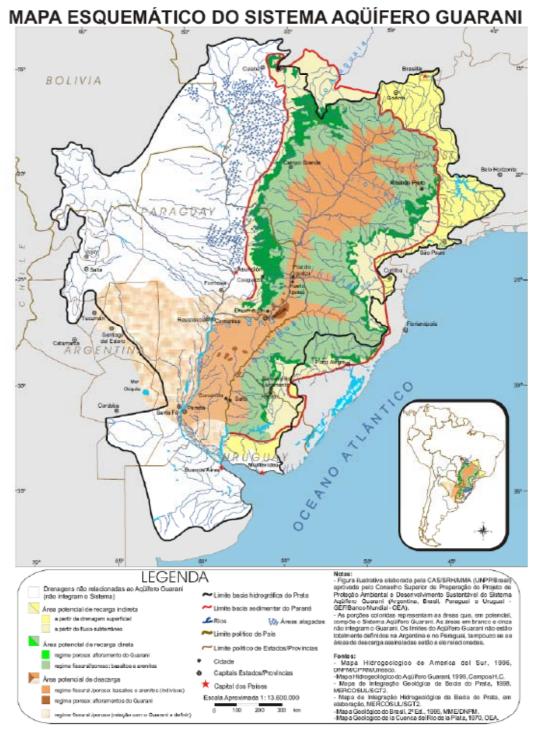
Quadro 4.3 – Parâmetros hidrodinâmicos do Aqüífero Guarani

Parâmetros	Valor médio
Coeficiente de permeabilidade	3 m/dia
Coeficiente de armazenamento	10-4 a 10-6
Porosidade	15 a 20% (média de 17%)
Transmissividade	entre 150 e 800 m2/dia
Velocidade de circulação	muito baixa, de 0,50 a 0,75 cm/dia

Fonte: modificado de Gualdi (1999); Rocha (1996); OEA (2001) apud Borghetti et al., 2004.

Atualmente várias cidades de médio e grande porte são totais ou parcialmente abastecidas pelo Aqüífero Guarani.

Geologia e Hidrogeologia


Uma **Bacia Sedimentar** é uma depressão mais ou menos extensa, preenchida por sedimentos oriundos das áreas circunjacentes. Os extratos ou camadas mergulham em geral da periferia para o centro, geralmente em forma de uma bacia. Existem vários exemplos de bacias sedimentares, tais como: Bacia de Paris, Bacia Amazônica e Bacia do Paraná.

A Bacia Sedimentar do Paraná, cujo preenchimento teve início, há cerca de 440 milhões de anos e concluído há cerca de 70 milhões de anos, é representada por uma depressão alongada segundo a direção norte-sul. Possui espessura total máxima perfurada de 7.825 metros, com extensão aproximada de 1,6 milhões de Km2. Está localizada no Centro - Leste da América do Sul, entre 12º e 35º de latitude sul e 47º e 65º de longitude oeste, como mostra a figura 4.1.

O Aqüífero Guarani é constituído por um pacote de rochas sedimentares, predominantemente arenosas, que se depositaram na Bacia Sedimentar do Paraná ao longo do Mesozóico entre 200 e 132 milhões de anos, constituído pelas formações geológicas Pirambóia e Botucatu. O Aqüífero Guarani está ilustrado na figura 4.1, onde podem ser observadas as áreas de recarga direta, áreas de recarga indireta, áreas de descarga, os limites da Bacia Sedimentar do Paraná, os limites da Bacia Hidrográfica do Prata, dentre outras informações.

Os arenitos das formações Pirambóia e Botucatu existem no oeste do Uruguai, leste do Paraguai e nordeste da Argentina, e distribuem-se por uma área de aproximadamente 1.300.000 Km2. Estes arenitos formavam um antigo deserto e hoje, constituem excelentes reservatórios de águass subterrânea, conhecida como **Aqüífero Guarani**.

A Formação Pirambóia é conhecida no Uruguai como Buena Vista. A Formação Botucatu é conhecida como Misiones, no Paraguai; Tacuarembó, no Uruguai e Argentina. Atu-

Fonte: www.ana.gov.br/guarani/files/mapaA4.pdf

almente, as formações Botucatu e Pirambóia são conhecidas nos quatro países como Aqüífero Guarani, em homenagem ao povo indígena que vivia na região.

No passado geológico (era paleozóica), antes da formação da Bacia Sedimentar do Paraná, a região de sua ocorrência esteve sob influência da invasão do mar, de glaciação e de esforços tectônicos (forças que interferem na movimentação das camadas da crosta terrestre).

Em distintos períodos foram depositados sedimentos finos (argilas, siltes e calcários) com centenas de metros de espessura.

A partir do Triássico, entre 248 e 206 milhões de anos, o mar regrediu. Em ambiente continental, rios e lagos se formaram e o clima foi se transformando até se tornar inteiramente desértico. Foi nessa época que ocorreu novo ciclo de sedimentação: na base da seqüência depositaram-se sedimentos arenosos, argilosos, lacustres, fluviais e eólicos; pertencentes à Formação Pirambóia.

A seguir, o clima tornou-se mais seco e toda a região transformou-se num imenso deserto, com deposição de arenitos eólicos em sucessivos campos de dunas; constituindo a Formação Botucatu.

Os estudos do ambiente de sedimentação caracterizam, assim, os depósitos da Formação Botucatu como de origem eólica, enquanto os da Formação Pirambóia são de ambiente flúvio-lacustre e eólico.

Os arenitos da Formação Botucatu são de granulação fina, constituídos por grãos de quartzo bem arredondados e teor de argila inferior a 10%. As sucessivas camadas de dunas são estratificadas de forma assimétrica e formam um pacote de 150 metros de espessura média. Enquanto que, os arenitos Pirambóia são de granulação muito fina e apresentam do topo para a base, teores de argila acima de 20% (Rocha, 1997).

No início do período Cretáceo, quando ainda prevaleciam condições desérticas, a Bacia do Paraná foi afetada por intenso vulcanismo. Sucessivos derrames de lavas basálticas pertencentes à Formação Serra Geral, recobriram quase todo pacote de sedimentos da formação Botucatu que atingiu valores superiores a 2.000 metros no interior da Bacia do Paraná. O vulcanismo foi acompanhado por perturbações tectônicas na bacia, gerando falhamentos, soerguimento das bordas e arqueamentos que marcam sua estrutura atual (Leinz & Sallentien, 1962; Maack, 1970; Rebouças, 1976).

Durante o Cretáceo Superior, já em clima semi-árido, depositaram-se sobre as rochas vulcânicas da Formação Serra Geral, seqüências de sedimentos flúvio-lacustres calcíferos dos Grupos Caiuá e Bauru (Fúlfaro & Perinoto, 1996).

Assim, o Sistema Aqüífero Guarani é do tipo confinado sobre cerca de 90% da sua extensão, sendo coberto pelos derrames de lavas vulcânicas que ocorreram entre 120 e 130 milhões de anos (Cretáceo Inferior) e tendo na base depósitos sedimentares argilosos, depositados entre 225 e 440 milhões de anos (do Permiano ao Siluriano).

A espessura do aquífero confinado é variável; no centro da bacia predominam espessuras de 100 a 350 metros, sendo que na região de Campo Grande – MS atinge valores da ordem de 600 metros (Araújo et al, 1995).

As áreas de recarga direta do aqüífero ocorrem nas regiões de afloramento do arenito na superfície do terreno; nestas regiões, a recarga se dá pela infiltração direta das águas pluviométricas através do solo. As áreas de recarga indireta ocorrem nos basaltos, onde favorece os fluxos descendentes em direção ao aqüífero; o reabastecimento se dá pela drenagem vertical das águas pelas fissuras dos basaltos da Formação Serra Geral e/ou pela drenagem através das rochas do Grupo Bauru/Caiuá. As áreas de descarga, onde favorece o fluxo ascendente, isto é, para fora do aqüífero, também ocorrem nos basaltos, principalmente nas regiões cujas cotas topográficas são inferiores a 300 metros (ver figura 4.1).

Até há pouco tempo acreditava-se que o Aqüífero Guarani fosse contínuo em toda sua área de extensão, armazenando e conduzindo água subterrânea a partir de suas áreas de recarga direta, a leste e oeste, com fluxo preferencial confluindo para a calha central da bacia, na direção dos rios Paraná e Uruguai, sem a existência de barreiras hidráulicas. No entanto, estudos hidroquímicos, associados a feições tectônicas (Rosa Filho et al, 2003 e 2005) indicam que o Aqüífero Guarani está compartimentado por diques de diabásio, falhamentos e deslocamento de blocos, proporcionando barreiras hidráulicas que afetam o fluxo da água subterrânea. As características de produção dos poços e da qualidade das águas subterrâneas vão depender das características de cada compartimento, principalmente da área, profundidade, espessura dos sedimentos e tempo de residência.

As águas do Aqüífero Guarani armazenam-se nos poros de suas rochas (aqüífero poroso). Suas rochas estão assentadas sobre rochas sedimentares do Paleozóico, de baixa permeabilidade e, em alguns locais, sobre rochas mais antigas do embasamento cristalino. Cerca de 90% da área está recoberta por espessos derrames de lavas basálticas, o que lhe confere características de um aqüífero regional confinado. Cerca de 10% de sua área total aflora à superfície como faixas alongadas nas bordas leste e oeste da bacia, devido ao soerguimento pretérito e à erosão, constituindo áreas de recarga direta do aqüífero (ver figura 4.1).

O confinamento do aqüífero impõe condições de artesianismo em quase toda a área da região, a partir de algumas dezenas de quilômetros de distância dos afloramentos (ver figura 4.1).

As águas subterrâneas do Aqüífero Guarani, em geral, podem ser consumidas sem necessitar de tratamento, tendo em vista os processos físicos, químicos e biológicos de autodepuração que ocorrem no subsolo. No entanto, nas regiões de maior profundidade, a água muitas vezes não é potável devido ao elevado teor de sólidos totais dissolvidos, elevadas concentrações de sulfatos e a ocorrência de água com teores excessivos de fluoreto, acima dos limites recomendados para o consumo humano.

A qualidade das águas subterrâneas do Aqüífero Guarani, em geral, é fracamente salina. A partir das áreas de recarga em direção à calha da bacia, há tendência à alcalinização das águas no sentido do fluxo, acompanhado pelo aumento gradual do teor salino, do pH e da temperatura. Esta evolução hidroquímica é controlada pelo grau de confinamento, pela velocidade do fluxo e pelo tempo de residências das águas subterrâneas (Rocha, 1997).

Áreas aflorantes, onde o
aqüífero é do tipo livre.Áreas confinadas, onde há
conectividade com a Formação
Serra Geral.Áreas mais confinadas
Áreas mais confinadas
Águas bicarbonatadas-cálcicas e
calco-magnesianas.Águas bicarbonatadas-cálcicas e
calco-magnesianas.Águas bicarbonatadas-cálcicas e
evoluindo a cloro-sulfatadas-
sódicas

STD: ± 200 mg/L

STD: ± 650 mg/L

Quadro 4.4 – Composição Química das Águas do Agüífero Guarani.

STD: ± 100 mg/L

Fonte: modificado de Silva (1983), apud Borghetti et al., 2004

Observa-se que a partir das áreas de afloramento do Aqüífero, onde as águas são do tipo bicarbonatada cálcica-magnesianas, as águas evoluem para sufatada-cloretada-sódica conforme aumenta o confinamento, assim como ocorre o aumento da salinização, da temperatura e do pH. As primeiras são aproveitadas para o consumo humano enquanto que as últimas não, embora possam ser aproveitadas devido ao seu grau geotérmico, que é o aumento da temperatura em função da profundidade.

Os estudos têm demonstrado que as temperaturas das águas do Aqüífero Guarani apresentam valores de 220 a 250C nos afloramentos onde o aqüífero é do tipo livre, de 25 a 300C na faixa de baixo confinamento e entre 30 e 680C na maior parte da área confinada, isto é, as regiões onde ocorre o termalismo localizam-se na parte mais central da Bacia Sedimentar do Paraná, enquanto nas áreas de afloramento não ocorre termalismo (BORGHETTI et al., 2004).

Enfim, embora em algumas áreas, exista um enorme potencial de água subterrânea para abastecimento público, nem toda água do Aqüífero Guarani apresenta excelente potabilidade.

O principal uso destas águas é o abastecimento das populações. Como exemplo temos a cidade de Ribeirão Preto, onde 100% da água utilizada para abastecimento público provém do Aqüífero Guarani.

O uso industrial também é importante, várias indústrias necessitam de água de boa qualidade. Como exemplo, podemos citar as indústrias de alimento, como a frigorífica, as indústrias têxteis, as engarrafadoras de água mineral, refrigerantes, cervejarias, dentre outras.

Na agricultura, o principal uso é na irrigação. Este tipo de uso apresenta dois problemas, normalmente a irrigação consome grande volume de água, devendo-se evitar o seu uso em culturas de grande extensão. Nas áreas mais confinadas do aqüífero, onde as águas ocorrem em grande profundidade, tornam-se impróprias para a irrigação, pois possuem teores elevados de sólido totais dissolvidos. Com exceção das duas condições acima citadas, o Aqüífero Guarani pode ser usado na irrigação.

Com relação ao aproveitamento das características geotermais, deve-se salientar os complexos hidrotermais que aproveitam as águas quentes com várias estruturas de lazer e recreação principalmente no Brasil, Argentina e Uruguai. Outros aproveitamentos tam-

bém podem ser utilizados como fonte alternativa de energia para: lavagem de carcaça de animais; na climatização de ambientes como a calefação e refrigeração; armazenamento e secagem de grãos; escaldagem, depenagem e evisceração de aves; na secagem de madeira; na secagem, refrigeração e na desidratação de frutas e vegetais; na fermentação da cevada para produção de cerveja; nos períodos de inverno pode ser utilizado na aqüicultura; produção de águas envasadas, produção de metano; dentre outros, que poderiam aproveitar a temperatura da água, reduzindo os custos com o aquecimento. Em áreas agrícolas, onde a temperatura da água é elevada (de 30 a 63°C), podem ser perfurados poços onde a água quente pode ser usada no controle de geadas.

É importante observar que as áreas mais vulneráveis à contaminação são as zonas onde o arenito aflora à superfície do terreno, isto é, na região de recarga direta. A vulnerabilidade diminui à medida que o aqüífero se aprofunda e adquire condições de confinamento.

5 – OS PROBLEMAS DO USO INADEQUADO DA ÁGUA E DO SOLO

Antônio Brandt Vecchiato

"Lata d'água na cabeça / Lá vai Maria / Lá vai Maria..." Luís Antonio e I. Júnior

Um dos grandes desafios da humanidade, no início desse novo milênio, é a questão da água. Por esse motivo a Organização das Nações Unidas instituiu a "Década da Água para a Vida", com o objetivo de despertar nas pessoas a consciência para o cuidado com a conservação desse importante recurso natural e, nos governos, especialmente dos países desenvolvidos, o compromisso de uma efetiva cooperação internacional para financiar programas de abastecimento público e saneamento básico nos países subdesenvolvidos e em desenvolvimento.

A "Década da Água para a Vida" é resultado da Conferência Mundial de Desenvolvimento Sustentável, realizada em Joanesburgo (África do Sul), em 2002, e suas metas estão intimamente ligadas aos oito Objetivos de Desenvolvimento do Milênio (ODM), já que a água é fator crucial para a redução da pobreza, da fome e da desnutrição no mundo. Boas condições sanitárias e acesso à água potável melhoram a saúde das crianças, diminuindo os riscos de doenças, reduzindo a mortalidade infantil e, conseqüentemente, aumentando a presença nas salas de aula. Além disso, o uso da água de forma consciente é vital para a conservação do meio ambiente e para o desenvolvimento sustentável.

De acordo com dados da Organização das Nações Unidas (ONU, 2005), cerca de 1,5 bilhões de pessoas, não dispõe de água potável e mais de 2,4 bilhões de pessoas não con-

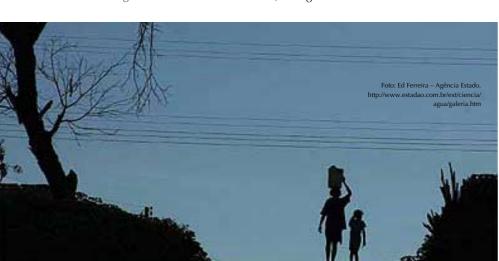


Figura 5.1 – Foto de Ed Ferreira, da Agência Estado.

tam com saneamento básico. Além disso, a Organização Mundial da Saúde (OMS) alerta para o fato de que cerca de dois milhões de pessoas, em sua maioria crianças, morrem anualmente por falta de água e mais da metade dos leitos hospitalares nos países em desenvolvimento são ocupados por pacientes com doenças associadas à falta de água potável e saneamento básico. Ainda, segundo a OMS, cerca de 4,6 milhões de crianças de até 5 anos de idade morrem por ano de diarréia, doença motivada pela ingestão de água não potável, agravada pela fome relacionada à má distribuição econômica de renda.

No capítulo 2 – **Ciclo da Água** foi mostrado que embora exista muita água no planeta Terra, esta se distribui de maneira irregular, no tempo e no espaço, devido ao caráter aleatório dos processos físicos do ciclo hidrológico. Desta maneira, temos regiões que apresentam uma grande abundância de água, como por exemplo, a floresta amazônica, e outras regiões extremamente secas como os desertos. Por outro lado, em alguns anos a quantidade de chuva é bem menor do que a usual, ou ao contrário, ocorrem chuvas intensas. Esta aleatoriedade é responsável pela distribuição heterogênea, no tempo e no espaço, da água no Planeta, cujas conseqüências são as estiagens e as inundações com danos incalculáveis à humanidade. Portanto, embora a água seja um recurso natural renovável, ela deve ser considerada um recurso finito.

A abundância ou a ausência de água em uma região é determinada por características geográficas, especialmente a interação do clima com o relevo. A figura 5.2 apresenta seis diferentes regiões segundo a disponibilidade de umidade. A América do Sul e a Ásia são as regiões que apresentam as maiores porções de terras úmidas, seguidas pela América do Norte e Europa. As regiões hiperáridas, representadas pelos grandes desertos, ocorrem no norte da África e centro da Ásia.

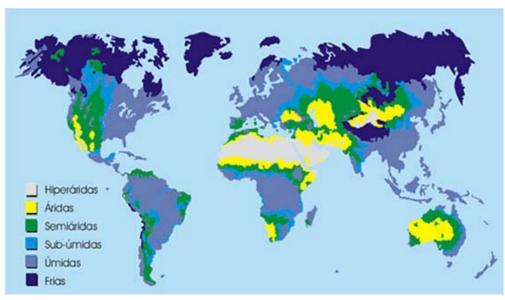


Figura 5.2 - Distribuição das regiões secas e úmidas no planeta

Fonte: ONU, 1997

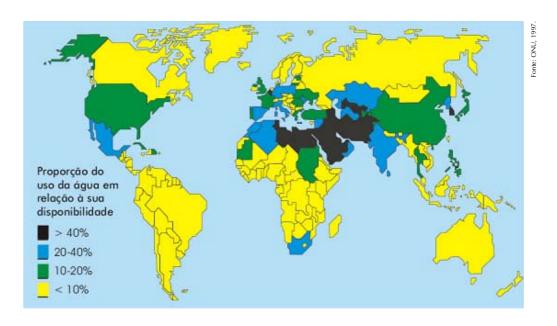


Figura 5.3 – Proporção entre uso e disponibilidade hídrica no mundo.

No entanto, regiões bastante povoadas, em que a demanda por água é alta, apresentam carência desse produto de vital importância, como pode ser observado na Figura 5.3, especialmente no norte da África e no Oriente Médio.

A figura 5.4 apresenta o uso mundial da água por setor de consumo durante o período de 1940 a 2000, percebe-se que o maior uso corresponde ao agrícola, seguido pela indústria e pelo abastecimento público municipal. Outro fato, bastante importante observado na figura é que o consumo da água cresceu de maneira exponencial.

Conforme observado na Figura 5.4, o consumo mundial da água doce disponível mais que dobrou nos últimos 50 anos, e hoje corresponde a mais de 3.600 km3, representando uma parcela considerada dos recursos hídricos acessíveis, ou seja, os rios, lagos, reservatórios, aqüíferos e, até mesmo, as águas de degelo da primavera nos países de clima temperado e frio.

A exploração dos recursos hídricos proporcionou o desenvolvimento econômico de inúmeros países, especialmente na agricultura, geração de energia, indústria, transporte e bem-estar urbano. Todavia, a intensificação do uso e, principalmente, as crescentes competições por água entre os vários setores vêm degradando as fontes naturais. O ciclo natural da água tem sido interrompido ou alterado nas regiões muito urbanizadas e os ecossistemas que garantem a quantidade e a qualidade da água estão sendo suprimidos, ou estão sob forte pressão.

Mesmo considerando o crescimento da população mundial, conforme observado na Tabela 5.1, o consumo da água cresceu em maiores proporções. No decorrer do século XX a demanda de água aumentou em mais de seis vezes, sendo superior ao crescimento populacional no período em pelo menos duas vezes. Portanto, a humanidade está consu-

1940 1950 1960 1970 1980 1990 2000

— Total Indústria
— Agricultura Município

Figura 5.4 – Uso mundial da água por setor de consumo no período de 1940 a 2000.

Fonte: Organização das Nações Unidas, 1997.

mindo mais água. Isso se deve não apenas por aspectos econômicos (aumento da renda da sociedade, incremento das atividades agropecuárias e industriais), como também por aspectos sociais e culturais (urbanização, lazer, mudanças de hábitos e higiene pessoal).

Atualmente, cerca de 3.600 km3 de água doce são utilizados para uso humano, o equivalente a 580 m3 per capita por ano. Ressalta-se que, 2.600 km3/ ano de água foram utilizados nas lavouras em todo o mundo, no ano de 2000, sobretudo pelo incremento da irrigação, largamente adotada para incrementar a produção agrícola exigida pela demanda do crescimento populacional. De fato, em todas as regiões, exceto Europa e América do Norte, a atividade agrícola é a maior usuária da água, conforme observado na figura 5.5.

Quadro 5.1 - Ocupação da Terra pela Humanidade

Época	Número de habitantes		
10.000 anos atrás	5 milhões		
Início da era Cristã	250 milhões		
Em torno de 1850	1 bilhão		
Ano 2.000	6 bilhões		
Ano 2.100	10 a 11 bilhões		

A agricultura irrigada é a que mais desvia água da natureza, utilizando 70% do volume total extraído do sistema global de rios, lagos e mananciais subterrâneos. Os 30% restantes destinam-se a fins diversos como: consumo doméstico, atividade industrial, geração de energia, recreação, abastecimento e outros. Atualmente, a agricultura irrigada ocupa 17% das terras aráveis do planeta, sendo responsável por 40% da produção mun-

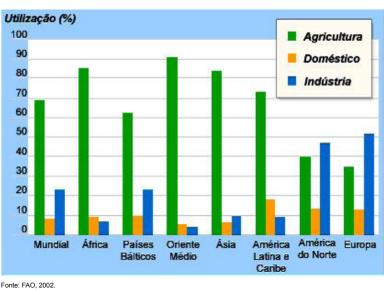


Figura 5.5 – Uso da água por região e por setor de consumo.

dial de alimentos. Estima-se que até 2025, a atividade agrícola com uso da irrigação irá crescer de 20 a 30 %.

Um fato importante de ser observado é que, as estimativas referentes ao uso da água na agricultura não incluem o uso da água da chuva. De fato, mais alimentos ainda são produzidos através do uso da água da chuva do que pela água irrigada. No entanto, é patente a importância da agricultura no desafio de fazer as reservas hídricas da Terra atenderem a necessidades sempre crescentes, especialmente no que diz respeito à produção de alimentos. O consumo de água na produção agrícola irrigada é extremamente alto tendo em vista as perdas por evaporação, infiltração no terreno e manejo inadequado. A esse respeito basta considerar o fato de que, a água necessária para a produção de uma tonelada de grãos colhidos corresponde à cerca de 1.000 a 3.000 m3, isto é, para cultivar 1 quilo de arroz ou milho, são necessárias 1 a 3 toneladas de água.

Por outro lado, a pecuária também necessita de muita água, por exemplo, apenas um quilo de carne corresponde a 18.000 litros de água que foram fornecidos direta ou indiretamente ao animal que lhe deu origem, até a carne estar pronta para o consumo.

No Brasil, calcula-se que cerca de 50% da água captada para uso são destinadas para a irrigação, em apenas 5% da área total irrigada. Torna-se necessário: além de ampliar essa área, despertar no produtor rural a consciência do uso mais racional da água, adotando técnicas e equipamentos mais eficientes, evitando o desperdício até mesmo irresponsável desse importante recurso natural, pois, estima-se que apenas metade da água irrigada de fato chega às raízes das plantas.

Nesse sentido, torna-se importante esclarecer a distinção existente entre a água que é retirada e a água que é realmente utilizada. Dos 3.600 km3 de água retirada anualmente, aproximadamente metade é absorvida pelas raízes, sendo parte incorporada nas lavou-

Aqüifero Guarani – Educação ambiental para sua preservação na região do Planalto dos Guimarães

ras e parte retorna à atmosfera, através da evaporação e transpiração das plantas (evapotranspiração). O restante retorna para os corpos d'água (rios, lagos, reservatórios,...) ou se infiltra no solo e fica depositada nos aqüíferos. Contudo, infelizmente, essa água é geralmente de qualidade inferior àquela que foi inicialmente retirada.

Assim, a irrigação consome bastante da água que é utilizada, geralmente metade ou mais, na forma de evapotranspiração das plantações e incorporação nas lavouras. A outra metade se infiltra no solo, ou escoa superficialmente ou se perde em evaporação improdutiva.

Desta forma, ao se exportar produtos agrícolas (grãos, fibras, frutas, madeiras,...), está, também se exportando água.

Um bom manejo do solo pode reduzir significativamente a quantidade de água necessária para a produção de uma tonelada de grãos, tanto na agricultura irrigada quanto na que só utiliza a água de chuva.

O mapa representado na figura 5.6 apresenta os países onde a irrigação desempenha um papel fundamental (categoria 5) e onde é importante (categoria 4) na agricultura. Observa-se ainda que a irrigação é pouco usada nas zonas temperadas ao norte e em partes expressivas da África.

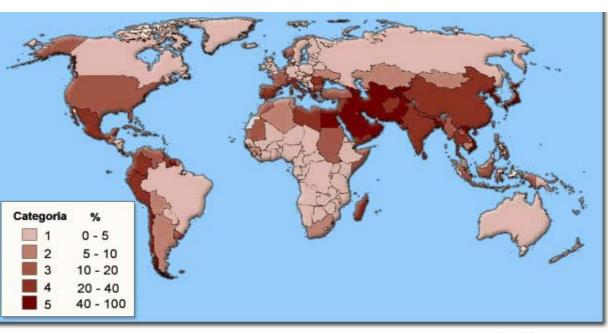
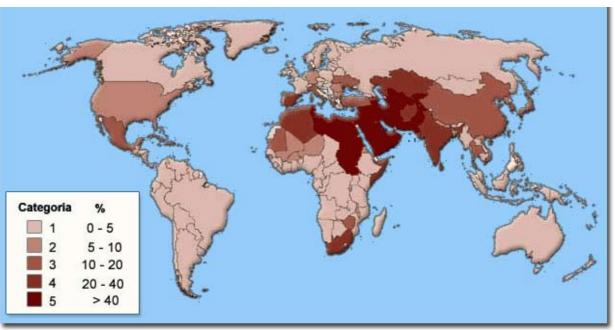



Figura 5.6 – Porcentagem de áreas equipadas para irrigação em terras cultivadas (1998)

Fonte: FAO 2002.

Figura 5.7 – Porcentagem de água utilizada na agricultura provinda de recursos hídricos renováveis (1998)

Fonte: FAO, 2002.

Enquanto muito ainda pode ser feito para aumentar a produtividade agrícola em áreas cultivadas apenas com a água da chuva, as áreas agrícolas irrigadas despertam muita atenção e preocupação por parte de pesquisadores e órgãos de gestão dos recursos hídricos. Isso se deve pelo fato dessa água, após ser derivada do seu curso natural, usada para irrigar as culturas, retorna para os rios e aqüíferos, evidentemente com grande mudança tanto qualitativa quanto quantitativa.

O mapa representado na figura 5.7 mostra que inúmeros países em desenvolvimento dependem muito da irrigação para a sua produção agrícola. De acordo com a análise feita pela FAO em 93 países, concluiu-se que 18 deles usam agricultura irrigada em mais de 40% de sua área cultivada; outros 18 países irrigam de 20 a 40% de suas áreas agrícolas (FAO, 2002).

Inevitavelmente, o uso intensivo da água para a agricultura afeta negativamente as reservas hídricas. Ao observar atentamente o mapa da figura 5.7 percebe-se que 20 países encontram-se em condições críticas por utilizarem mais de 40% de seus recursos hídricos renováveis na agricultura. Os países podem ser definidos como estando em "estresse hídrico" (water stressed) se retirarem mais de 20% de seus recursos hídricos renováveis. Por essa definição, 36 de 159 países (23%) já se encontravam nessa situação em 1998.

Torna-se necessário, portanto, planejar adequadamente o uso dos recursos naturais, em especial a água e o solo, e adotar técnicas de manejo que minimizem os impactos ambientais e os prejuízos econômicos e sociais.

Desta forma, especial atenção deve ser dada ao uso de técnicas corretas de conservação de solo, diminuição do uso de biocidas na agricultura irrigada e tratamento dos efluentes domésticos e industriais nas cidades de maneira a garantir a qualidade e disponibilidade dos recursos hídricos.

No Brasil, o desenvolvimento da agropecuária ocorreu sem planejamento adequado e com falta de políticas públicas eficazes, que pudessem ordenar essa ocupação de forma racional e sustentada para evitar a degradação continuada e persistente dos recursos naturais. Após o uso agrícola intensivo, com as conseqüentes perdas da fertilidade dos solos, novas áreas eram desmatadas.

O histórico das culturas da cana de açúcar, café, algodão, arroz, milho, feijão e, mais recentemente a soja, são exemplos marcantes desse fato nos estados do Rio de Janeiro, São Paulo, Minas Gerais, Paraná e Rio Grande do Sul. Em Mato Grosso, exemplo marcante do drástico processo de ocupação pode ser constatado pelo significativo aumento da área desmatada de 1970 a 1990, de 1.589.000 ha para 13.875.000 ha (FEMA, 1997). Assim, torna-se evidente que a sustentabilidade da agricultura encontra-se seriamente ameaçada pelo esgotamento dos recursos naturais em que se apóiam as práticas agrícolas até aqui difundidas. A ocupação de novas áreas sem antes ter racionalizado o uso das atuais significa estimular ainda mais a degradação ambiental.

Como conseqüência podem-se citar como grandes problemas a intensificação dos processos erosivos, a perda de fertilidade dos solos, a desertificação, o assoreamento dos fundos de vale e cursos d'água, além de uma constante e sempre maior dependência de fertilizantes e agrotóxicos para se manter a produtividade agrícola, intensificando os riscos de contaminação dos solos e das águas superficiais e subterrâneas, especialmente pela ocupação de áreas mais vulneráveis como as cabeceiras de drenagem, fundos de vales, veredas e campos úmidos.

O problema da desertificação chamou a atenção dos cientistas a partir do fenômeno conhecido como "Dust Bowl", que ocorreu no meio oeste dos Estados Unidos na década de 1930, representado por uma intensa degradação do solo, em uma área de 380.000 Km2 abrangendo os estados de Oklahoma, Kansas, Novo México e Colorado. As causas foram à agricultura intensiva e a falta da adoção de práticas conservacionistas de solo e água.

Em meados dos anos 70, uma grande seca acometeu a região conhecida como Sahel, que forma uma faixa de terras, de extensão variável, intermediária entre o deserto do Saara, ao norte, e a zona de savanas, ao sul. O aumento da atividade agrícola e a intensa utilização das pastagens naturais agravada pelas prolongadas secas provocaram o aumento da extensão do deserto sobre a área saheliana, sobretudo em direção ao sul e ao sudeste; nessa ocasião, 500.000 pessoas morreram de fome, despertando definitivamente a comunidade internacional para o gravíssimo problema da desertificação.

No Brasil, existem quatro núcleos de desertificação: Gilbués no Piauí, Cabrobó em Pernambuco, Seridó no Rio Grande do Norte e Irauçuba no Ceará. Além desses núcleos de desertificação, ocorrem extensos areais no sudoeste do Rio Grande do Sul. A tabela 5.2 apresenta a área e a população atingida pelo processo de desertificação no Nordeste brasileiro.

A Convenção das Nações Unidas de Combate à Desertificação realizada em Paris no ano de 1994 estabelece que: "por desertificação entende-se a degradação do solo em áreas áridas, semi-áridas e subúmidas secas, resultante de vários fatores, entre eles mudanças climáticas e atividade humana".

Portanto o termo desertificação deve ser aplicado apenas aos processos que ocorrem nas áreas áridas, semi-áridas e subúmidas secas, o que, no Brasil, significa que tal processo só pode ocorrer no nordeste semiárido, havendo uma distinção em relação às áreas ao sul do país que também estão sofrendo forte processo de degradação.

Tabela 5.2 – Desertificação no Nordeste, Área e População Afetada

Grau de Comprometimento	Área em Km² População		% Área	% População
Muito Grave	52.425	1.378.064	4	4
Grave	247.831	7.835.171	20	21
Área Total	665.543	15.748.769	55	42

Fonte: Ferreira et al. 1994.

As áreas de degradação que ocorrem no sudoeste do Rio Grande do Sul são identificadas pelo Ministério do Meio Ambiente como áreas de atenção especial, isto é, apresentam forte processo de degradação ambiental derivado à ação do homem. Para explicar os processos ambientais que ocorrem nesta região, adota-se o conceito de arenização.

Por arenização entende-se o processo de retrabalhamento de depósitos arenosos pouco ou não consolidados, acarretando dificuldades de fixação da cobertura vegetal, devido à intensa mobilidade dos sedimentos pela ação das águas e dos ventos. Desta forma, arenização indica uma área de degradação relacionada ao clima úmido, onde a diminuição do potencial biológico, especialmente no que diz respeito à cobertura vegetal, não desemboca em definitivo em condições de tipo deserto. Ao contrário, a dinâmica dos processos envolvidos nesta degradação dos solos é fundamentalmente derivada da abundância de água (SUERTEGARAY, 1987).

A área de ocorrência de areais está localizada no sudoeste do Rio Grande do Sul, a partir do meridiano de 54º em direção oeste até a fronteira com a Argentina e a República Oriental do Uruguai e tem, como substrato geológico, o arenito da Formação Botucatu. Sobre esta Formação Mesozóica assentam-se depósitos arenosos não consolidados, originados de deposição hídrica e eólica durante o Pleistoceno e Holoceno. São nestes depósitos que se originam os areais.

De acordo com a Secretaria de Recursos Hídricos do Ministério do Meio Ambiente as perdas econômicas acarretadas por esses processos são de cerca de 800 milhões de dólares anuais.

Outro grande problema relacionado à má conservação do solo e da água diz respeito à erosão do solo. Responsável pela depauperação (perda e/ou esgotamento) de extensas áreas de solos agricultáveis e pelo assoreamento de cursos d'água e reservatórios, provo-

ca impactos extremamente negativos aos recursos hídricos e acarreta grandes prejuízos econômicos e sociais.

As gotas de chuva, ao caírem no terreno removem partículas de solo, essas partículas são transportadas pela enxurrada até o fundo do vale podendo até mesmo alcançar os cursos d'água, assoreando-os. Ao escoar superficialmente, a água arrasta partículas do solo lavando a superfície do terreno como um todo, provocando a **erosão laminar**.

Outras vezes, o fluxo de água se concentra em conseqüência das enxurradas, provocando a abertura de sulcos no terreno, que irão acumular cada vez mais água que ganhará força, provocando o aprofundamento dos sulcos, surgindo, dessa maneira a **erosão linear** na forma de **ravina**, que pode atingir a expressão de **boçoroca**, na medida em que a erosão aprofundar no terreno e interceptar o nível d´água (nível da água subterrânea próximo da superfície). A figura 5.8 mostra uma ravina.

A abertura de estradas rurais, caminhos, trilhas de gado e cercas, podem facilitar o escoamento concentrado das águas de enxurrada, provocando o surgimento dos processos erosivos lineares, acelerando a formação de sulcos e ravinas no terreno. Até mesmo a adoção de práticas conservacionistas, quando mal executadas, podem provocar o surgimento de processos erosivos, exemplo disso é a instalação de curvas de nível mal planejadas, que podem concentrar água em determinados pontos, provocando o rompimento do terraço e conseqüente formação de erosão linear.

Quando esses sulcos, ao se aprofundarem pela ação das águas de escoamento superficial atingirem o lençol freático, esse processo erosivo se intensifica e passa a contar também com a participação do nível d´água, transformando-se então em uma boçoroca, que é uma forma erosiva de grandes proporções. A figura 5.9 exemplifica uma boçoroca.

Figura 5.8 – Erosão linear na forma de ravina, causada pelo escoamento concentrado das águas da chuva ao longo de uma cerca

Figura 5.9 – Erosão linear na forma de boçoroca; observar a água corrente no fundo da erosão e a grande dimensão atingida por esse processo erosivo.

A despeito de ser muito menos intensa que a erosão provocada pela água, a erosão eólica vem se intensificando, especialmente nas extensas áreas de planalto no centro do Brasil. Motivada especialmente pelo intenso desmatamento e preparo do solo para as culturas de soja, algodão, milho, cana de açúcar entre outras, durante os meses de julho, agosto e setembro, são comuns as ocorrências de "roda moinhos", em áreas do Planalto dos Guimarães. A figura 5.10 exemplifica tal fato em uma área de solo descoberto de vegetação e preparado para agricultura.

Figura 5.10 – Erosão eólica em área preparada para a lavoura.

As perdas de solo, fertilizantes e biocidas, devido aos processos erosivos são enormes, acarretando sérios prejuízos econômicos aos produtores rurais, além de intensificar a contaminação dos cursos d'água, reservatórios e aqüíferos, comprometendo a qualidade dos recursos hídricos. A Tabela 5.3 apresenta uma estimativa da perda de solo e de nutrientes por algumas culturas no estado de São Paulo, demonstrando a ordem de grandeza das perdas de solo relacionada aos processos erosivos que ocorrem em lavouras bastante usuais, tais como: feijão (3810 toneladas de solo por ano em uma área de 100 ha), arroz (2510 t/ano em 100 ha), milho (1200 t/ano em 100 ha) e soja (2010 t/ano em 100 ha).

Observa-se que as culturas perenes, pastagens e reflorestamento apresentam as menores perdas de solo e nutrientes. Torna-se importante esclarecer que tais dados se referem a uma situação média, portanto, não refletem uma situação específica em particular.

No entanto, os processos erosivos não ocorrem apenas nas áreas rurais, mas também nas cidades, com prejuízos econômicos e sociais são ainda maiores, comprometendo o patrimônio dos cidadãos e obras públicas, além de colocar em risco a vida da população das áreas atingidas. A figura 5.11 apresenta a ocorrência de uma boçoroca em uma área urbana; pode-se observar o comprometimento do arruamento, a grande dimensão do processo erosivo e a proximidade do mesmo de várias casas. Infelizmente a ocorrência de boçorocas em áreas urbanas é uma realidade presente em inúmeras cidades brasileiras, devido principalmente aos equívocos ocorridos durante a ocupação urbana que, na maioria das vezes, não leva em consideração as limitações impostas pelo meio físico, representadas pelo substrato rochoso, solo, relevo e drenagem.

Tabela 5.3 – Estimativa da perda de solo e de nutrientes em algumas culturas. Área em hectares (ha) e perda de solo e nutrientes em toneladas por ano (t/ano).

Tipo de Cultura	Área (ha)	Perda solo (t/ano)	N (t/ ano)	P (t/ ano)	K (t/ ano)	Ca+Mg (t/ano)	Sulfato de Amônio (t/ano)	Superfosfato Simples (t/ano)	Cloreto de Potássio (t/ano)
Algodão	100	2480	2,40	0,07	0,25	2,35	12,00	0,36	0,43
Amendoim	100	2670	2,58	0,07	0,27	2,53	12,92	0,39	0,46
Arroz	100	2510	2,43	0,07	0,25	2,38	12,14	0,37	0,43
Café	100	90	0,09	0,00	0,01	0,09	0,44	0,01	0,02
Cana	100	1240	1,20	0,03	0,12	1,18	6,00	0,18	0,21
Feijão	100	3810	3,69	0,10	0,38	3,61	18,43	0,56	0,66
Laranja	100	90	0,09	0,00	0,01	0,09	0,44	0,01	0,02
Mandioca	100	3390	3,28	0,09	0,34	3,22	16,40	0,50	0,59
Milho	100	1200	1,16	0,03	0,12	1,14	5,81	0,18	0,21
Pastagem	100	40	0,04	0,00	0,00	0,04	0,19	0,01	0,01
Reflorestamento	100	90	0,09	0,00	0,01	0,09	0,44	0,01	0,02
Soja	100	2010	1,94	0,05	0,20	1,91	9,72	0,30	0,35

Fonte: www.cnpma.embrapa.br/analise_econ/

Figura 5.11 - Boçoroca em área urbana - Bauru SP

Os processos erosivos são as principais causas do assoreamento dos rios, comprometendo a qualidade e disponibilidade dos recursos hídricos tão necessários para a manutenção das cidades. A figura 5.12 exemplifica o intenso assoreamento de um rio, motivado pela má ocupação do solo urbano, culminando com a ocorrência de boçoroca.

A urbanização é, talvez, uma das características mais marcantes do mundo. Hoje, existem vinte e tres (23) megacidades, com populações superiores a 10 milhões de habitantes, sendo que dezoito (18) das quais, encontram-se em países em desenvolvimento. A cada ano 60 milhões de novos habitantes somam-se a estas megacidades, seja por migração ou por crescimento vegetativo, aumentando as demandas por água e multiplicando os problemas por superexploração, poluição e má gestão dos recursos hídricos disponíveis.

Estima-se que até o ano de 2025 mais de 5 bilhões de pessoas estarão vivendo em zonas urbanas, portanto qualquer solução relacionada à crise da água encontra-se atrelada à governabilidade das cidades. O fato é que, a urbanização crescente agrava tanto os conflitos pela água, quanto intensifica os impactos ambientais decorrentes das obras necessárias para assegurar o abastecimento das populações cada vez mais concentradas.

Muitas cidades já exploram as águas subterrâneas acima da capacidade de reposição natural. A cidade do México, devido à retirada excessiva de água do subsolo, apresenta um grave problema de subsidência, ou seja, a cidade está literalmente afundando (Murck et al., 1996). A cidade de Ribeirão Preto — SP retira anualmente do Aqüífero Guarani 93 milhões de metros cúbicos de água, no entanto, a recarga empreendida pelas chuvas é de 7 milhões de metros cúbicos, ou seja, a água extraída excede em mais de 13 vezes o que é reposto pela chuva. (ABAS, 2006).

Figura 5.12 – Assoreamento de rio motivado pelo uso impróprio do solo

Outro problema é a falta de cuidado e o desperdício, mais de 90% da água utilizada para uso doméstico retornam para os rios e aqüíferos como água imprópria ao consumo humano. As indústrias consomem apenas 5% da água que retiram. Essa água imprópria dos esgotos domésticos e industriais deveria ser devidamente tratada antes de voltar para os rios e, preferencialmente, deveria ser reutilizada, mas freqüentemente está poluída demais para o seu reuso.

Quanto ao desperdício, aponta-se o fato de que em média as cidades brasileiras perdem cerca 30% a 40% em vazamentos na rede de distribuição. A grande São Paulo desperdiça cerca de 10 m3 de água por segundo, o que daria para abastecer cerca de 3 milhões de pessoas diariamente. A isto se somam ainda os hábitos culturais inadequados como deixar as torneiras abertas, lavar calçadas e ruas com jatos de água e tomar banhos intermináveis.

Portanto, o crescimento da população e a concentração da população nas cidades são maiores que a capacidade de fornecimento de água de boa qualidade. Na América Latina, 30% da população vivem em cidades com mais de um milhão de habitantes, aglomerados urbanos que geram necessidades e situações de planejamento e administração bastante complexos. Como resultado: cerca de 92 milhões de pessoas sem acesso à água potável e 122 milhões sem esgoto sanitário.

Por outro lado, diversos países apresentam sérios problemas relacionados à poluição de seus aqüíferos, em alguns casos devido a superexploração ou a redução da recarga, como por exemplo, a contaminação por Arsênio dos poços de 85% da área de Bangladesh, com risco potencial para 75 milhões de habitantes, sendo que 1,2 milhão já apresentaram

sinais de intoxicação, há registros de ocorrência em larga escala desse problema em Gana, Taiwan, norte da China, Hungria, Grécia, Áustria, México, Chile, Argentina e Estados Unidos. No Brasil a região do Quadrilátero Ferrífero em Minas Gerais, apresenta risco de contaminação da água por Arsênio circunscrito às áreas de mineração (Borba, et.al., 2004).

A crise mundial da água é constantemente reforçada pelos conflitos em regiões onde dois ou mais países, ou até mesmo diferentes etnias de um mesmo país, compartilham a água de rios e aqüíferos comuns. São históricas as disputas por água na origem dos conflitos no Oriente Médio. Outro exemplo é o sistema de exploração do aqüífero do Nordeste do Saara, que gerou conflitos, desde a sua fase de planejamento entre a Líbia e seus vizinhos Argélia e Tunísia. Infelizmente, não faltam áreas diplomaticamente sensíveis, porque as águas de rios transfronteiriços vêm se tornando cada vez mais escassas e/ou poluídas, ou por que os recursos hídricos superficiais e subterrâneos vem sendo intensamente explorados. Tais problemas afetam a Europa, Ásia, África e América.

Além dos conflitos entre países ou povos, a desigualdade social e de distribuição de renda também estabelece barreiras para o acesso à água, separando ricos e pobres. As populações mais pobres são, também, as mais expostas e que sofrem as piores consequências dos desastres relacionados à água, incluindo as grandes inundações, as secas freqüentes e a desertificação em larga escala.

Nos países pobres, a degradação dos recursos hídricos é motivada, principalmente, pela falta de saneamento e, a pobreza faz com que a sobrevivência seja prioritária em relação à proteção do meio ambiente. Nos países ricos e desenvolvidos, como que por ironia, o desperdício, o consumo insustentável da água e dos demais recursos naturais é a causa da degradação ambiental.

A ONU, através da "Década Internacional Água para a Vida", pretende direcionar ações para a solução da degradação dos recursos hídricos, a partir da conscientização das comunidades e de sua participação nos processos de decisão. E, ainda, reconhecer o valor econômico da preservação ambiental, implementar e reafirmar acordos multilaterais relativos à questão, e fazer uso de incentivos fiscais para promover a preservação.

Água para a Vida, acima de tudo, convoca uma efetiva cooperação internacional na administração de um recurso vital para a humanidade. É a oportunidade de países compartilharem não só as águas, mas saneamento, saúde e sustentabilidade.

O documento da ONU ressalta que durante a Década será necessário à participação do maior número possível de mulheres, pois na maioria das sociedades são elas que buscam, manuseiam e guardam água para as necessidades familiares como higiene, saneamento e saúde. Elas também detêm conhecimentos sobre diversos aspectos do assunto, incluindo local, qualidade e métodos de armazenagem. Ao mesmo tempo, as mulheres são as grandes vitimas da falta de água: a ausência de banheiros nas escolas faz com que as meninas não freqüentem as aulas, são as mulheres que percorrem, à procura de água, distâncias longas ou áreas perigosas. Se todos tiverem acesso à água, elas terão mais tempo para realizar outras atividades, como freqüentar a escola, tomar conta dos filhos e realizar as tarefas de casa.

A melhoria no acesso à água potável e ao saneamento tem também importância social, por reduzir a pobreza, favorecer a educação e diminuir a mortalidade infantil e materna. A criatividade, energia e conhecimento de homens e mulheres podem contribuir para o melhor funcionamento do projeto proposto pela ONU além de, evidentemente, melhorar substancialmente a qualidade de vida das populações mais carentes.

Para isso se tornar realidade, no entanto, será necessário que diversas recomendações sejam implementadas em todos os países do mundo, destacando-se: igualdade de participação de homens e mulheres nas tomadas de decisões em questões relativas à água; atenção à privacidade e segurança necessárias para mulheres e crianças; alternativas viáveis de melhoraria do saneamento; e acesso à água para todos. Essas medidas, se implementadas de fato, transformará a famosa letra da música de Luis Antônio e J.Junior, um grande sucesso do carnaval de 1952, em apenas uma recordação do que foi o flagelo da falta de água.

Lata d'água

(Luís Antonio e J. Júnior)

Lata d'água na cabeça Lá vai Maria Lá vai Maria

Sobe o morro e não se cansa Pela mão Leva a criança Lá vai Maria

Maria
Lava a roupa
Lá no alto
Lutando pelo pão
De cada dia
Sonhando com a vida
Sonhando com a vida
Do asfalto
Que acaba
Onde o morro principia

Alguns números para recordar:

- A Organização Mundial da Saúde (OMS) concluiu que para atingir os objetivos da Década serão necessários 11,3 bilhões de dólares.
- Um bilhão e meio de pessoas terão que ganhar acesso à água potável e ao saneamento básico, o que significa 100 milhões de pessoas por ano ou 274 mil por dia.
- Dois bilhões e quatrocentos milhões de pessoas não dispõem de saneamento básico.
- Mais de dois milhões, em sua maioria crianças, morrem por ano em decorrência de doenças associadas à falta de água potável e saneamento básico.
- Quatro milhões e seiscentas mil crianças de até cinco anos morrem por ano de diarréia.
- Quinhentos milhões de pessoas vivem em países com escassez de água.
- Mais da metade dos leitos de hospitais em países em desenvolvimento é ocupado por pacientes com doenças associadas à falta de água potável e saneamento.

6. O AQÜÍFERO GUARANI NO ESTADO DE MATO GROSSO

Prof. Dr. Prudêncio Rodrigues de Castro

O Aqüífero Guarani em Mato Grosso configura duas áreas descontínuas no centro-sul e no extremo sudeste do Estado, que totalizam 26.400 Km2, correspondendo a 3,1% da área total do Estado e 2,9% da área total do Aqüífero. Metade dessa área, ou seja, 13.199 km2 ou 1,5% do Estado é área de recarga, onde habita uma população de 80.735 habitantes, distribuídos em 11 municípios.

A área 1 situa-se, em termos geomorfológicos, no Planalto dos Guimarães, correspondendo a parte dos municípios de Chapada dos Guimarães, Campo Verde, Nova Brazilândia, Poxoréo, Primavera do Leste, Dom Aquino e entre os municípios de Guiratinga e Tesouro.

A área 2 situa-se no Planalto Taquari/Alto Araguaia, na porção sudeste do estado de Mato Grosso, próximo a divisa dos estados de Goiás e Mato Grosso do Sul, compreendendo parte dos municípios de Itiquira, Alto Araguaia, Alto Garças e Alto Taquari, conforme ilustra a Figura 6.1.

Embora este aqüífero seja o mais importante da América do Sul e do Brasil, no estado de Mato Grosso é pouco explorado por possuir baixa densidade demográfica em suas áreas de ocorrência, e por não serem boas as suas condições de armazenamento, pois ocorre em borda de bacia, o que não permite condições ideais de retenção das águas subterrâneas. No entanto, o aqüífero vem atendendo principalmente a propriedades rurais e pequenos núcleos urbanos. Possui, assim, importância hidrogeológica média a pequena. No entanto, suas águas são de excelente qualidade físico-química, servindo para o consumo humano e qualquer outra atividade.

O Aqüífero Guarani encontra-se nessas duas áreas, assentado discordantemente sobre a Formação Aquidauana. Conferir com o mapa geológico. Em parte da área 2, encontra-se recoberto pelos basaltos da Formação Serra Geral, e, na área 1, encontra-se parcialmente recoberto pelos sedimentos do Grupo Bauru ou pelas Coberturas Detríto Lateríticas.

As águas do Aqüífero Guarani alojam-se na porosidade das rochas da Formação Botucatu, constituídas por uma seqüência de arenitos eólicos finos a médios, arredondados, porosos e permeáveis, com estratificação cruzada de grande porte.

Essas características da rocha evidenciam sua origem em um antigo deserto, de idade triássica, que foi recoberto pelas lavas de inúmeras e intensas erupções vulcânicas, há aproximadamente 250 milhões de anos atrás, por ocasião da separação dos continentes africano e sul americano e da abertura do Oceano Atlântico.

Santo Antônio do Leste Nova Brasilandia Area 1 Primavera dø Leste Area 1 Cuiabá **R**-070 Carrigo Verde BR-163 oxoréo Jaciara Z Juscimeira São Pedro da Cha Barão de Melgaço São José do Povo Rondonópoli dra Preta Araguainha ltiqu<mark>iga</mark> 男_{MT-299} Sonora Área 2 <mark>Alto Tä</mark>ajuar Legenda Cidades Municípios Rodovias Área de afloramento 1:2.000.000 do Aqüífero Guarani

Figura 6.1 – Áreas de afloramento do Aqüífero Guarani no Mato Grosso

Fonte: extraído e modificado de Lacerda Filho, J. V. de et al, 2004.

A presença desse deserto encontra-se registrada na história da Terra por meio das rochas sedimentares areníticas da Formação Botucatu que atualmente aloja as águas do Aqüífero Guarani, estendendo-se pelos estados de Mato Grosso, Mato Grosso do Sul, Goiás, Minas Gerais, São Paulo, Paraná, Santa Catarina e Rio Grande do Sul, alcançando ainda o Uruguai e Argentina.

Na área 1, o Aqüífero Guarani aflora principalmente ao longo da rodovia MT 251, que liga as cidades de Cuiabá e Chapada dos Guimarães, bem visível no local conhecido como Portão do Inferno, a norte da cidade de Chapada dos Guimarães e a leste das localidades de Água Fria, Rio da Casca e Usina do Manso, e ainda, próximo a Campo Verde ao longo da MT 344, que liga a Dom Aquino. Na área 2, afloramentos do Aqüífero Guarani, são facilmente visíveis ao longo das rodovias MT 100, MT 299 e BR 364.

Trata-se de um aqüífero poroso do tipo livre na área 1, podendo ser confinado na área 2, conforme indica a configuração geológica, a localização e extensão regional, embora sem informações de poços.

As vazões dos poços tubulares perfurados que penetram este aqüífero são em geral inferiores a 10m3/h, para rebaixamento de 80m, gerando vazão específica de 0,125 m3/h/m. Porém, vale destacar um poço perfurado na região da Água Fria com vazão de 66m3/h, para rebaixamento de 30m, gerando uma vazão específica de 2,20 m3/h/m.

Tais poços são parcialmente penetrantes, isto é, não atingem toda a espessura do aqüífero, sugerindo grande potencial hidráulico. Esse fato mostra a necessidade de estudos hidrogeológicos mais aprofundados.

As águas subterrâneas que se infiltraram através dos poros dos arenitos da Formação Botucatu, encontrando o substrato impermeável das rochas que formam o Grupo Cuiabá, exfiltram-se pela superfície em direção à bacia hidrográfica.

Dessa maneira o Aqüífero Guarani, na região de Chapada dos Guimarães forma as nascentes dos rios Coxipó, dos Peixes, Mutuca, Claro, Paciência, bem como do rio da Casca. Na região do Alto Taquari o Aqüífero Guarani contribui com formação das principais nascentes dos rios Araguaia, Taquari e Itiquira.

É importante ressaltar que as áreas onde se encontram situados o Aqüífero Guarani no Estado de Mato Grosso são áreas de recarga, possuindo alta vulnerabilidade à contaminação.

Municípios do Aqüífero Guarani em Mato Grosso

Os municípios do Aqüífero Guarani no estado de Mato Grosso, conforme ilustra o Quadro 6.1, elaborado a partir de dados da SEPLAN-MT (2004) e do IBGE (2005), apresentam área territorial média de 4.800 Km2, sendo que o menor deles, Alto Taquari, possui uma área de 1.394,76 Km2 e o maior, Itiquira, possui 8.638,69 Km2. Situam-se a uma distância média de 280 km de Cuiabá, sendo Chapada dos Guimarães o mais próximo o município de Cuiabá e o mais distante Alto Taquari.

O IDH dos municípios do Aqüífero Guarani em Mato Grosso situam-se na média de 0,7635, o que representa médio desenvolvimento humano, embora três municípios, Alto Taquari, Campo Verde e Primavera do Leste possuem IDH igual ou superior a oito, indicando alto desenvolvimento humano.

O IDH representa o índice que determina o nível de desenvolvimento humano dos países, estados e municípios, utilizando como critérios indicadores de educação (alfabetização e taxa de matrícula), longevidade (esperança de vida ao nascer) e renda (PIB per capita) medido numa escala que varia de zero a um, onde zero significa nenhum desenvolvimento humano e um, desenvolvimento humano total. Lugares com IDH até 0,499 têm desenvolvimento humano considerado baixo, com índices entre 0,500 e 0,799 são considerados de médio desenvolvimento humano e com IDH superior a 0,800 têm desenvolvimento humano considerado alto.

Quadro 6.1 – Aspectos Socioeconômicos e Ambientais dos Municípios do Aqüífero Guarani.

Municípios	Área (Km²)	Distância de Cuiabá (Km)	IDH	PIB	Domicílios abastecidos de água (%)	Habitantes
1. Chapada dos Guimarães	6.206,57	63	0,711	46.850	54	17.607
2. Campo Verde	4.794,55	127	0,800	232.969	74	24.267
3. Dom Aquino	2.205,07	142	0,722	43.827	78	8.204
4. Poxoréo	6.923,23	290	0,743	78.699	70	17.619
5. Primavera do Leste	5.472,21	230	0,805	422.773	45	56.982
6. Nova Brasilândia	3.266,21	194	0,710	19.412	63	4.786
7. Guiratinga	5.358,32	315	0,761	63.078	88	11.323
8. Tesouro	4.017,27	366	0,759	17.439	69	2.242
9. Itiquira	8.638,69	347	0,767	157.500	66	9.949
10. Alto Araguaia	5.538,02	418	0,786	56.728	78	11.811
11. Alto Garças	3.660,39	357	0,795	90.423	78	8.353
12. Alto Taquari	1.394,76	482	0,804	66.362	76	5.392

Fonte: SEPLAN - MT, 2004 e IBGE, 2005.

Chapada dos Guimarães, além do importante potencial turístico, pratica a agricultura de subsistência, intercalada com produção de soja, milho, sorgo e arroz em maior escala. A pecuária também tem importância econômica, além da atividade de mineração (diamantes). No setor econômico destaca-se extração de Pequi que ocupa a 2ª posição no estado, a produção de ovos de galinha a 3ª, a produção de mel de abelha a 30ª, a produção de cana-de-açúcar a 40ª, a extração de lenha a 41ª, a produção de soja a 52ª, o rebanho bovino a 61ª, a produção de leite a 73ª e finalmente a produção de arroz que ocupa a 99ª posição.

Chapada dos Guimarães é um dos principais divisores de águas da América Latina. Do alto de seus mirantes, ricos em nascentes, descem as águas que correm para o Pantanal, indo desaguar na Bacia Platina. Ao Norte, as águas dirigem-se para a Bacia Amazônica e para a Bacia do Tocantins. O Parque Nacional de Chapada dos Guimarães é o cartão de visita do Cerrado mato-grossense, um museu a céu aberto que atrai cientistas, místicos e turistas de todas as partes do mundo. A seqüência de relevos esculpidos em arenitos esconde muitos segredos e revela várias cachoeiras. No percurso Cuiabá - Chapada, o visitante se depara com entradas para algumas atrações como: Cachoeira Véu de Noiva, Cachoeirinhas da Independência, das Andorinhas e do Pulo, entre outras. A estrada conduz ao Complexo Turístico da Salgadeira e ao Parque Nacional de Chapada, com seus 33 mil hectares (SEDTUR – MT, 2005).

A região do Planalto dos Guimarães, além de suas belezas naturais, especialmente representadas pelo Parque Nacional de Chapada dos Guimarães, destaca-se também pelo desenvolvimento da agroindústria. O crescimento na agricultura é demonstrado pelo incremento na produção de soja e algodão, a presença de empresas de beneficiamento de grãos de soja e algodoeiras, agrega valores à produção agrícola, incentivando o desenvolvimento socioeconômico do estado. Por outro lado, destacam-se também a avicultura, suinocultura e a pecuária, também com a presença de grandes frigoríficos.

Grande parte do município é Área de Proteção Ambiental (APA), uma categoria de unidade de conservação que busca compatibilizar o desenvolvimento socioeconômico com a conservação ambiental, embora, juntamente com a grande demanda de recursos hídricos, vem se deflagrando problemas de erosão e contaminação do solo e das água pela utilização de agrotóxicos.

A economia do município de Campo Verde merece destaque a produção de ovos de galinha, ovos de codorna e produção de algodão que ambas ocupam o 1º lugar no estado, já a produção de soja ocupa o 12º, a extração de lenha e a produção de leite o 22º, a produção de mel de abelha o 25º, a plantação de cana-de-açúcar o 30º, o rebanho bovino 74º, a extração de madeira em tora 88º e a produção de arroz em 93º.

A economia do município de Dom Aquino tem como destaque a extração de palmito que ocupa o 2º lugar no estado, a produção de leite o 13º, a produção de cana-de-açúcar o 15º, a produção de algodão o 17º, a produção de mel de abelha o 21º, a produção de ovos de galinha o 32º, a produção de soja o 36º, a extração de lenha o 54º e finalmente o rebanho bovino que ocupa o 85º lugar (SIDRA – IBGE, 2005).

O município de Poxoréo merece destaque na sua economia a produção de leite ocupando o 10º lugar no estado, a produção de carvão vegetal ocupando o 18º, a produção de mel de abelha no 20º, a produção de algodão no 21º, o rebanho bovino no 23º, a produção de ovos de galinha no 23º, a produção de soja no 26º, a extração de lenha no 36º, a plantação de cana-de-açúcar no 41º, a produção de arroz no 72º e a produção de madeira em tora no 73º lugar (SIDRA – IBGE, 2005).

O município de Primavera do Leste o destaque da economia vai para a plantação de algodão que fica em 3º lugar no estado, a produção de soja que fica em 5º, a extração de

lenha que fica em 9°, a produção de mel de abelha que fica em 10°, a produção de arroz que fica em 58°, a produção de ovos de galinha que fica em 71°, a extração de madeira que fica em tora em 82° e a produção de leite que fica em 85°.

Já o município de Nova Brasilândia no setor econômico destaca-se a produção de arroz que está em 38º lugar no estado, a produção de leite que está em 62º, o rebanho bovino que está em 64º, a plantação de cana-de-açúcar que está em 70º, a produção de soja que está em 75º e a extração de lenha que está em 92º (SIDRA – IBGE, 2005).

O município de Guiratinga, no setor econômico, destaca-se a extração de lenha que ocupa a 1ª posição no estado, a produção de algodão a 16ª, a plantação de soja a 24ª, a extração de carvão vegetal a 32ª, a produção de ovos de galinha a 39ª, a produção de leite a 50ª, o rebanho bovino a 62ª e por último encontra-se plantação de cana-de-açúcar na 66ª posição (SIDRA – IBGE, 2005).

No município de Tesouro, sua economia tem como destaque a produção de algodão que ocupa o 32º lugar no estado, a extração de carvão vegetal que ocupa o 33º, a produção de soja o 38º, a produção de ovos de galinha o 72º, a produção de arroz o 81º, a produção de leite o 83º, a extração de lenha o 91º, o rebanho bovino o 96º e a extração de madeira em tora o 100º lugar.

No setor econômico do município de Itiquira destaca-se a extração de lenha que ocupa o 2º lugar no estado, a produção de soja que ocupa o 9º lugar, o rebanho bovino o 22º, a produção de ovos de galinha o 24º, a produção de carvão vegetal o 30º, a produção de leite o 51º e a produção de arroz o 91º.

O município de Alto Araguaia possui destaque na sua economia a produção de mel de abelha (11º lugar no estado), na produção de leite ele fica em 15º, na produção de canade-açúcar em 26º, na produção de algodão em 27º, na produção de soja em 39º, no rebanho bovino em 48º e finalmente na produção de arroz em 63º.

A economia principal do município de Alto Garças é a produção de algodão, onde ocupa o 14º lugar no estado, na produção de soja ocupa o 19º lugar, na extração de lenha o 66º, na produção de leite o 82º, na produção de ovos de galinha também a 82ª posição e na plantação de cana-de-açúcar o 92º lugar.

O município de Alto Taquari é um dos maiores pólos produtores de sementes de soja do estado de Mato Grosso, sendo considerado um dos municípios que tem a maior produtividade no país. Além da soja, que é a cultura dominante no município, a região investe alto em pecuária, produção de algodão, milho, sorgo, trigo, uva e girassol. No setor ranking estadual o município se destaca na produção de mel de abelha, onde ocupa o 11º lugar, já na produção de leite ele fica em 15º, na plantação de algodão em 18º, na produção de soja em 23º, no rebanho bovino em 48º, na produção de arroz em 73º e na extração de lenha em 74º (SIDRA – IBGE, 2005). Em Alto Taquari o turista poderá conhecer um dos mais modernos terminais de grãos do país, a FERRONORTE. A cidade também possui lindas cachoeiras, vales, e a nascente do rio Araguaia.

É importante ressaltar que a atividade econômica que confere o IDH e o PIB mais elevado a alguns dos 11 municípios do Aqüífero Guarani em Mato Grosso é justamente aque-

la que mais coloca o Aqüífero em risco de contaminação e poluição, devido ao modelo agroquímico adotado na produção agropecuária.

Em grande parte da área de recarga do aqüífero Guarani em Mato Grosso, a principal atividade de uso do solo é a agricultura extensiva de grãos, que utiliza grandes quantidades de fertilizantes químicos, bem como de defensivos agrícolas conhecidos por agrotóxicos para combater pragas. Esses produtos químicos são levados pela água da chuva ao Aqüífero ocasionando contaminação do solo e poluição das águas.

Por este motivo as áreas de recarga são protegidas por lei, cabendo ao Estado implantar e fiscalizar o desenvolvimento das atividade agropecuárias de acordo com o protocolo orgânico, utilizando fertilizantes e defensivos elaborados a partir de produtos naturais que não provocam poluição do solo, contaminação das águas, tampouco qualquer dano à saúde humana.

7 - IMPACTOS AMBIENTAIS E RISCOS DE DEGRADAÇÃO DO AQÜÍFERO GUARANI NA REGIÃO DO PLANALDO DOS GUIMARÃES

Antônio Brandt Vecchiato

Os aspectos relacionados à utilização da água pela sociedade e a influência da adoção de práticas adequadas de manejo do solo, para a manutenção da qualidade e disponibilidade dos recursos hídricos, foram apresentados no capítulo 4: "Os problemas do Uso Inadequado da Água e do Solo", nesse capítulo serão abordadas as diversas formas de distribuição dos contaminantes no ambiente e os principais fatores relacionados aos riscos de contaminação dos recursos hídricos, especialmente os relativos à degradação do Aqüífero Guarani na região do Planalto dos Guimarães.

A água subterrânea geralmente apresenta excelentes qualidades sendo, portanto, própria para o consumo humano, muitas vezes, sem nenhum tratamento prévio. No entanto, infelizmente, pode ter a sua qualidade comprometida, muitas vezes de maneira irremediável, quando substâncias contaminantes atingem a água subterrânea. Assim, entende-se por contaminação toda introdução, sólida ou liquida, gasosa e radiação, efetivada no ambiente hidrológico como resultado da atividade humana. Desta maneira, quando alguma alteração na água coloca em risco a saúde ou o bem estar da população ocorre uma contaminação (Freeze e Cherry, 1979).

Ressalta-se a enorme complexidade do estudo da dinâmica dos diversos contaminantes no ambiente, o objetivo desse capítulo não é o de tratar em profundidade esse assunto, mas sim, de apresentar uma visão geral sobre o problema da contaminação dos recursos hídricos, em especial das águas subterrâneas.

A figura 7.1 apresenta algumas maneiras de como os contaminantes entram no ambiente e, como se dá a sua movimentação, pelos diversos compartimentos ambientais. Inicialmente, vamos observar o comportamento dos **agrotóxicos**.

Os agrotóxicos usados na agricultura podem ficar **adsorvidos** nas partículas dos solos, ou podem ser transportados pelo escoamento superficial da água da chuva, ou seja, pela **erosão** até o fundo dos vales, contaminando os corpos d'água. Aqueles que ficaram adsorvidos no solo podem ser carregados pela água até o **aqüífero freático**, esse processo se denomina de **infiltração**. Ao atingir o nível d'água, a sua movimentação recebe o nome de **percolação**.

O agrotóxico presente nas águas subterrâneas pode ser transportado (percolado), e acabar contaminando corpos d'água alimentados pelo aqüífero freático. Ao atingir um corpo d'água (rio, lago, represa, etc.), os contaminantes podem ficar em suspensão ou dissolvidos na água, ou podem depositar no sedimento de fundo, em ambos os casos, podem

ser ingeridos pela fauna e flora aquática, concentrando-se na biota, entrando dessa forma na **cadeia trófica**. Os contaminantes em suspensão na água podem sofrer uma difusão, tanto na vertical quanto na horizontal, espalhando a contaminação por uma grande área. Por outro lado, podem também sofrer volatilização e contaminar a atmosfera e, sofrendo o transporte atmosférico, se propagar pela **deriva**. Através da chuva e da deposição de **particulados**, a contaminação retorna aos terrenos e corpos d'água.

Os agrotóxicos presentes no solo, além de ficar adsorvidos nas partículas do solo, sofrem evaporação e difusão. Podem também, ser absorvidos pelas plantas e animais, entrando na cadeia trófica, podendo inclusive contaminar os homens. As indústrias, através da emissão de contaminantes na atmosfera e despejo de esgoto nos corpos d'água, são outras fontes potenciais de poluição.

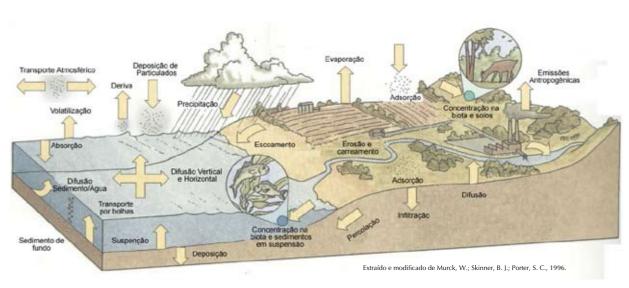


Figura 7.1 – Diversas maneiras de como os contaminantes entram e se movimentam no ambiente

De uma maneira geral, os hidrogeólogos consideram a existência de dois tipos de fontes de poluição para as águas subterrâneas: as fontes de poluição pontuais, fontes de poluição lineares e, as fontes de poluição dispersas (ou difusa).

A fonte de poluição pontual caracteriza-se pela concentração em um ponto determinado de uma quantidade ou variedade de poluentes, sendo que neste caso, a sua concentração na água subterrânea pode elevar-se acentuadamente. Incluem-se nesse caso: pontos de concentração de despejos para tratamento e infiltração provenientes de indústrias, pontos de concentração de esgotos municipais, estocagem de produtos químicos, disposição de resíduos sólidos (lixão), cemitérios, e outros. A figura 7.2 exemplifica algumas fontes de poluição pontuais. Observa-se, que nesses casos, existe ligação direta e imediata entre a fonte de poluição e a concentração de poluentes. Por outro lado, o volume de

água subterrânea que entra em contato com o poluente é relativamente pequeno e, se retirada a fonte de poluição com tratamento apropriado dos despejos, poder-se-á localizar, com técnicas geofísicas e/ou hidrogeológicas a parte das águas subterrâneas que foram poluídas, a assim chamada pluma de contaminação, e desta forma evitar perigo imediato. Já as fontes lineares ocorrem quando os rios influentes encontram-se contaminados e, portanto, provocam a ocorrência de uma pluma de contaminação linear ao longo de toda a extensão do rio.

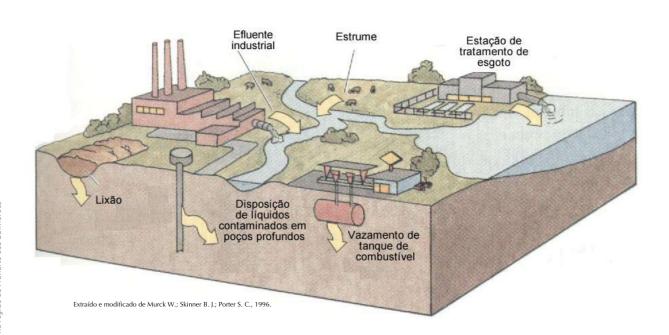


Figura 7.2 - Fontes pontuais de poluição

No caso de fontes poluidoras dispersas, o problema difere consideravelmente, pois uma quantidade de poluente relativamente pequena entrará em contato com grande volume de água subterrânea, justamente devido à sua dispersão em grandes áreas. Desse modo, enquanto uma fonte pontual pode proporcionar a infiltração à velocidade de centímetros e até metros por dia, uma fonte dispersa infiltra a ordens de grandeza de dezenas e até centenas de centímetro por ano. A quantidade de água envolvida no processo poluidor disperso é enorme e compromete todo o volume do aqüífero. Esse tipo de poluição, quando ocorre, é irreversível e, se o aqüífero já se encontra poluído, não é possível corrigi-lo, durante muitas décadas, mesmo cessada a poluição. A atividade agrícola, com emprego intensivo de agrotóxicos, é um exemplo de fonte dispersa de poluição. Outros exemplos são o escoamento superficial urbano e suburbano e as emissões atmosféricas industriais, conforme visualizado na figura 7.3, que exemplifica as fontes dispersas de poluição.

Na região do Planalto dos Guimarães, os principais **impactos ambientais** estão relacionados às atividades agropecuárias. O termo **impacto**, em nossa língua, significa choque de um corpo contra outro corpo, uma colisão, com evidentes efeitos danosos. Nas questões relacionadas ao ambiente, adota-se a palavra impacto com sentido, também de choque ou colisão de substâncias (sólidas, líquidas ou gasosas), de radiações ou de formas diversas de energia, decorrentes da realização de atividades ou de execução de projetos de serviços ou obras, alterando o meio ambiente natural, cultural, social ou econômico de forma danosa, em decorrência da contaminação do ar, da água, do solo, do subsolo, dos alimentos, da poluição sonora, da deterioração da paisagem, do desequilíbrio ecológico, com sérios prejuízos à qualidade ambiental, ao interesse público e, em especial, à saúde pública (Custódio, 1991).

Portanto, tecnicamente, considera-se impacto ambiental o conjunto das repercussões e das conseqüências que uma nova atividade ou uma nova obra, quer seja pública ou privada, possa ocasionar ao ambiente. Nesse sentido, a intensa ocupação agropecuária, direcionada, em termos agrícolas, para produção de grãos e algodão e implantação de grandes empreendimentos avícolas e de suinocultura, são exemplos da grande pressão antrópica exercida na região.

A substituição da vegetação natural pelas extensas culturas de soja, milho e algodão, levada a efeito nos últimos vinte anos, provocaram a ocorrência de fenômenos erosivos e assoreamento. Os processos erosivos são mais intensos nas áreas de cabeceiras de drenagem, veredas e nas partes inferiores das vertentes das extensas colinas, bastante peculiares na morfologia do relevo local. A esse respeito, pode-se consultar os trabalhos de Castro Jr. (1996); Salomão, et al. (2002); Ribeiro & Salomão (2003) e Fonseca Neto, et al., (2005).

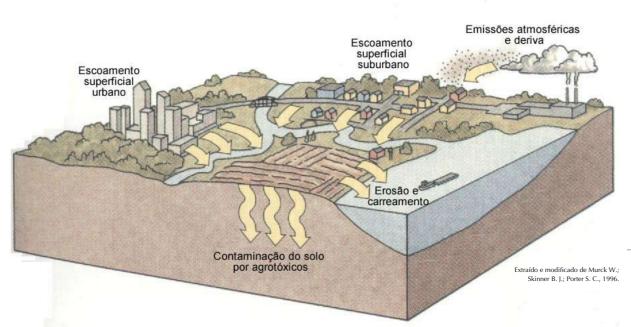


Figura 7.3 – Fontes dispersas de poluição

Por outro lado, o modelo de agricultura adotado na região, baseia-se no uso de agroquímicos (agrotóxicos, fertilizantes e corretivos), emprego intensivo da mecanização, desenvolvimento de culturas com alto potencial de rendimento e a adoção de técnicas de irrigação, com o objetivo de elevar os índices de produtividade. Desta forma, existe uma estreita relação da agricultura moderna e o uso intensivo de agroquímicos.

No entanto, esses produtos além de cumprirem o papel de proteger as culturas agrícolas das pragas, doenças e plantas invasoras, podem oferecer riscos à saúde humana e ao ambiente. O fato é que, o uso freqüente de agroquímicos oferece sérios riscos de contaminação dos solos, águas superficiais, águas subterrâneas, alimentos e intoxicação, sendo que, nesse último caso a gravidade dos sintomas e o momento em que surgem variam conforme o grau de intoxicação, que pode ser aguda, subaguda e crônica.

Os agrotóxicos aplicados na agricultura são distribuídos no ambiente de diferentes maneiras, dependendo das suas propriedades físico-químicas, das características ambientais e da sua forma de uso. Muitos trabalhos reportam a dinâmica de agrotóxicos em ambientes temperados, porém muito poucos estudaram seu comportamento em ambiente tropical. No Brasil, poucos são os estudos que investigaram a ocorrência de agrotóxicos usados atualmente em águas superficiais e subterrâneas.

Em um estudo realizado na região de Chapada dos Guimarães (Laabs et al., 2000), mostrou que os agrotóxicos *metolaclor*, *simazina* e *atrazina* exibiram potencial de lixiviação para camadas mais profundas do solo da região. Traços de *trifuralina* também foram detectados em água de percolação. Fato interessante observado nesse estudo foi que os valores detectados para as meias vidas desses agrotóxicos foram substancialmente menores do que os dados publicados para regiões temperadas.

Dores (2004), estudando a contaminação de águas subterrâneas por agrotóxicos, na região do Planalto do Guimarães, em áreas anteriormente usadas para a agricultura, detectou a presença dos herbicidas *metribuzina*, *metolaclor*, *simazina* e *atrazina* e traços de *trifuralina*.

Souza et al. (2004), realizaram uma avaliação preliminar da presença de agrotóxicos em poços tubulares da região de Primavera do Leste-MT. Dentre os agrotóxicos analisados foram detectados a *atrazina*, *metolacloro*, *carbofuram*, *parationa-metílica*, *imidaclo-prido* e *diuron*. Apesar dos agrotóxicos terem sido detectados em concentrações baixas, uma vez que os fatores responsáveis pela degradação destas substâncias estão ausentes ou presentes em muito menor intensidade nas camadas mais profundas do solo, a presença destas substâncias em águas subterrâneas é um indicativo da sua vulnerabilidade à contaminação.

Portanto, especial atenção deve ser tomada quanto ao uso agrícola, sobretudo nas áreas de recarga do Aqüífero Guarani. Deve-se enfatizar, que a presença, até mesmo de níveis baixos de agrotóxicos ou seus produtos de degradação em água, principalmente quando são usadas para consumo humano, pode trazer conseqüências ainda desconhecidas para a saúde. Pouco se conhece sobre os efeitos crônicos destas substâncias para o ser humano e para a vida aquática em geral. Existe ainda muita controvérsia sobre os efei-

tos dos chamados *estrógenos* ambientais, dentre os quais encontra-se a *atrazina*, um dos agrotóxicos mais freqüentemente encontrados em água, sobre o sistema hormonal do ser humano (McFarland, 1998; Hileman, 1994).

Além dos potenciais problemas de contaminação por agrotóxicos, o uso de fertilizantes tem, dentre outros como a criação confinada de animais, representando uma fonte de contaminação de águas por nitritos e nitratos. A importância do controle da concentração de nitrato em água usada para consumo humano deve-se ao fato dele ser facilmente convertido *in vivo* a nitrito como resultado da redução bacteriana. Na forma de nitrito, pode oxidar a hemoglobina em metahemoglobina, pigmento incapaz de atuar como portador de oxigênio. Este problema é particularmente importante em crianças, devido ao pH mais baixo em seu estômago, o que facilita a conversão de nitrato a nitrito. Além disso, no organismo humano, o nitrito pode também reagir com aminas e amidas para formar nitrosaminas, algumas das quais podem ser carcinogênicas (OMS, 1987).

Por estes motivos, o uso intensivo de agrotóxicos na agricultura tem preocupado a comunidade científica em geral devido ao risco de que essas substâncias venham a contaminar diferentes compartimentos do ambiente devido a sua distribuição através da água e da atmosfera, conforme foi exemplificado na figura 7.1. Vecchiato & Dores (2006), apresentam uma visão geral sobre o problema da contaminação dos recursos hídricos por agrotóxicos e apontam algumas medidas que visam controlar ou, pelo menos, minimizar essa contaminação.

Considerando a grande freqüência de ocorrência de agrotóxicos em água de escoamento superficial e em sedimento carreado, constatada amplamente na literatura, esses autores reiteram a importância da adoção de práticas adequadas de conservação do solo e da manutenção de faixa de cultura de contenção e de mata ciliar a fim de proteger os mananciais de água superficial. Esses sedimentos carreados inevitavelmente apresentam-se contaminados por agrotóxicos adsorvidos.

Recomendam ainda, não cultivar em solos muito erodíveis que, quando cultivados sem adoção de técnicas de manejo adequadas, especialmente quando se encontram nas porções mais inferiores das vertentes, favorecem o desenvolvimento de intensos processos erosivos e conseqüente assoreamento de porções do fundo de vale e da calha dos cursos d'água.

Além disso, sugerem também a preservação da vegetação em áreas de cabeceira de drenagem obedecendo às leis vigentes, uma vez que se trata de local com concentração de fluxos d'água tanto superficial como subterrânea e nível d'água aflorante a sub-aflorante. São, portanto, locais extremamente susceptíveis à erosão e contaminação.

Nas áreas de plantio convencional, deve-se contemplar um sistema de manejo que permita rotacionar as culturas, pois, adotando-se este procedimento aumenta-se o estoque de matéria orgânica no solo retendo com maior eficiência, as moléculas dos agrotóxicos. Além disso, devem-se adotar curvas de nível e terraceamento em toda a área.

As tecnologias de aplicação de agrotóxicos têm evoluído rapidamente tornando-as mais eficazes e seguras. Sugere-se a adoção de medidas de divulgação e incentivo à uti-

lização dessas técnicas.

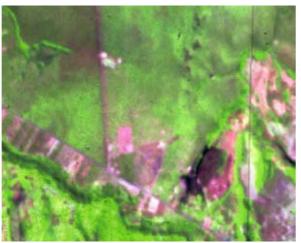
Outro grande problema existente na área que impõem uma forte pressão sobre os recursos hídricos, diz respeito ao grande numero de criações confinadas de animais. A esse respeito, Nierenberg & Garcés (2004), alertam para os impactos ambientais e ressaltam os efeitos sobre a saúde pública dos métodos de produção intensiva de animais, sobretudo pelo uso crescente de antibióticos, hormônios e de outros insumos. A produção animal industrial é um sistema de produção de animais que adota métodos intensivos da "linha de produção" para produzir um máximo de produtos animais com um mínimo de custo de produção. A produção animal é caracterizada por confinamentos de alta densidade, taxas de crescimento forçadas, grau de mecanização elevado e pouca mão-de-obra.

De acordo com a FAO (2002), o setor da indústria animal está crescendo em escala mais rápida na Ásia, seguida pela América Latina e Caribe. Segundo o Instituto Internacional de Pesquisa de Políticas Alimentares (1999), os países da América Latina, Ásia e África serão os líderes em produtos animais em 2020, sendo que grande parte dessa carne será produzida em sistemas industriais. Nestas regiões, muitas granjas industriais estão localizadas nas imediações ou até dentro do perímetro de alguns centros urbanos, podendo poluir a água, o ar e o solo. Com a falta de Legislação e regulamentos para controlar os insumos usados e/ou os produtos do sistema de produção animal em escala industrial, as conseqüências em potencial sobre a saúde pública e o meio ambiente, são fontes de grandes preocupações.

Além disso, nos países em desenvolvimento, existem poucos trabalhos que analisam os efeitos da indústria animal sobre a saúde pública e os impactos ambientais. Pesquisas realizadas na Grã-Bretanha e nos Estados Unidos levaram a preocupações expressas na literatura científica em relação a doenças infecciosas, resistência a antibióticos e poluição da água potável e do solo, causando sérias epidemias e outros problemas de saúde, como resultado dos insumos usados e dos dejetos produzidos nos sistemas industriais.

Um dos maiores problemas em relação à produção de animais em estilo industrial é que a manutenção de grande número de animais em confinamento denso, leva a problemas com os dejetos produzidos por esses sistemas e com doenças potenciais.

Para se ter uma idéia da extensão do problema, nos Estados Unidos, a quantidade de dejeto animal é 130 vezes maior que a quantidade de dejetos humanos e não está sujeita ao mesmo nível de tratamento. A contaminação da água subterrânea por nitrato proveniente dos dejetos pode criar graves problemas à saúde pública.(USA, 1997).


Portanto, especial cuidado deve ser tomado quanto à localização das criações confinadas de animais, evitando-se as áreas de recarga do Aqüífero Guarani e as proximidades de cursos d'água, cabeceiras de drenagem e veredas, locais que apresentam grande vulnerabilidade à contaminação. Por outro lado, esses empreendimentos não devem estar localizados próximos a centros urbanos e moradias.

Outro problema que merece destaque diz respeito à disposição dos resíduos urbanos, ou seja, o lixo. Tal assunto apresenta grande relevância, especialmente em nosso país, onde ainda existe ausência de uma visão mais crítica e de cobrança por parte da popula-

ção, facilitando a manutenção de serviços inadequados e o desperdício de recursos públicos na limpeza urbana. Tal posicionamento, ainda, não considera um aspecto decisivo: a preocupação com a destinação final do lixo.

Como resultado, são comuns os "lixões", ou então, os chamados "aterros controlados". Os primeiros são depósitos nos quais o lixo é jogado indiscriminadamente a céu aberto, sem nenhum cuidado. Nos segundos, os resíduos depositados são pelo menos recobertos. Porém, o fato é que ambos apresentam um grande impacto à saúde pública e ao meio ambiente. Construídos sem nenhum critério técnico, permitem o escoamento superficial e/ou a infiltração do **chorume** (líquido que se forma a partir da água da chuva e de materiais presentes nos resíduos), contaminando os mananciais subterrâneos e as águas superficiais. A questão da localização do depósito de lixo da cidade de Chapada dos Guimarães é crítica, por estar situada às margens da rodovia MT 020 em região de nascente de afluente do Rio Coxipó (Figura 7.4).

Figura 7.4 – (a) Localização do depósito de lixo de Chapada dos Guimarães, em imagem de satélite. (b) Depósito de lixo.

Fonte: Salomão et al., 2002.

Torna-se importante ressaltar que a disposição final do lixo somente deve ser feita em aterros sanitários, obra complexa de engenharia na qual são atendidos todos os quesitos necessários para possibilitar um destino adequado aos resíduos urbanos: a compactação e o recobrimento diário dos resíduos, o tratamento do chorume e dos gases (especialmente o metano), o isolamento da área, evitando o acesso de pessoas e animais e, quando esgotar sua capacidade, o planejamento do encerramento do aterro e da utilização futura do local.

Torna-se evidente a enorme importância dos problemas relacionados à contaminação dos recursos hídricos, especialmente os subterrâneos, que é a grande reserva de água pura das próximas gerações e a certeza da manutenção da vida na Terra. Para tanto, a educação é indispensável desde cedo, enquanto criança, sobre a complexidade das questões ambientais.

"Somos raros e preciosos porque estamos vivos, porque podemos pensar dentro de nossas possibilidades. Temos o privilégio de influenciar e talvez controlar o nosso futuro. Acredito que temos a obrigação de lutar pela vida na Terra - não apenas por nós mesmos, mas por todos aqueles, humanos e de outras espécies, que vieram antes de nós e a quem devemos favores, e por aqueles que, se formos inteligentes, virão depois de nós. Não há nenhuma causa mais urgente, nenhuma tarefa mais apropriada do que proteger o futuro de nossa espécie" (CARL SAGAN, 1997.

"Quando os pajés, em seus sonhos, vão ter com Ñanderuvuçu, ouvem muitas vezes como a terra lhe implora: 'devorei cadáveres demais, estou farta e cansada, ponha um fim a isto, meu pai'. E assim também clama a água ao criador, para que a deixe descansar; e assim também as árvores, que fornecem a lenha e o material de construção; e assim todo o resto da natureza. Diariamente se espera que Ñanderuvuçu atenda as súplicas da sua criação".Curt Niemuendaju

8. GERENCIAMENTO DOS RECURSOS HÍDRICOS

Lílian Fátima de Moura Apoitia

Os problemas ambientais decorrem, em grande parte das inconsistências do processo decisório que orienta a utilização dos recursos ambientais, particularmente, no que se refere à articulação e coordenação das ações e a participação da sociedade interessada na tomada de decisões.

Os níveis de degradação ambiental encontrada em diferentes regiões brasileiras não são justificáveis apenas pela falta do conhecimento desejável sobre a dinâmica ambiental ou de tecnologias ambientalmente adequadas. Entre as causas, um fator prioritário a ser considerado é a inadequação ou falhas no processo de gerenciamento, que dificulta ou impede as ações dos agentes sociais na aplicação do conhecimento existente, independente do seu nível de aprofundamento. Assim, no contexto do Gerenciamento, a atenção prioritária deve ser dada ao desenvolvimento de métodos adequados para regular o seu uso, controle, proteção e conservação sem, entretanto desmerecer a necessidade de esforços em pesquisas voltadas para o conhecimento da dinâmica ambiental e ao desenvolvimento de tecnologias ambientalmente adequadas.

O gerenciamento dos recursos hídricos é um dos instrumentos que pode minimizar os conflitos existentes entre os vários usuários da água, pois entre seus principais objetivos, estão: manter, minimizar ou contornar os conflitos de uso entre os setores de usuários, visando assegurar água em boa qualidade e quantidade. O gerenciamento deve ser um processo dinâmico, ambientalmente sustentável, baseado numa adequada administração da oferta das águas garantindo o máximo de benefício das mesmas.

O planejamento adequado e a gestão eficiente e eficaz dos recursos hídricos são missões relevantes e indeclináveis, pois, considerados como recurso natural, os mesmos representam um patrimônio público de insubstituível valor estratégico para o desenvolvimento social e econômico.

Dentre os modelos pressupostos de gerenciamento, os quais visam o equacionamento e a solução de inúmeros aspectos de relevância para a gestão das águas, destacam-se:

- O desenvolvimento sustentável;
- Os conflitos de uso e conseqüente escassez que deles resultam;
- Os problemas de desequilíbrio no balanço entre, a disponibilidade e demanda das águas;

O aproveitamento de oportunidades de promover um maior desenvolvimento sócioeconômico e melhoria da qualidade de vida, apoiando na perspectiva de uso múltiplo e integrado.

Gerenciamento dos recursos hídricos subterrâneos

A intensa ocupação territorial, associada ao uso da água subterrânea torna, o seu gerenciamento complexo. Definir programas de proteção é permitir o uso racional e sustentável em termos qualitativos e quantitativos.

O gerenciamento dos recursos hídricos subterrâneos deve estabelecer o volume total explotável de um aqüífero ou parte dele, de maneira a garantir a sua manutenção e deve contemplar as seguintes questões:

- Controle da perfuração de novos poços;
- Regime de extração em áreas críticas, sempre baseada na recarga do aqüífero;
- Monitoramento da quantidade das águas subterrâneas para detectar quedas nos níveis da água dos aquíferos e identificar problemas de super-explotação;
- Monitoramento sistemático e permanente da qualidade da água;
- O veto para perfuração de novos poços por parte do órgão de gestão dos recursos hídricos, apoiado em critérios de importância do usuário e estudos prévios da hidráulica do aquífero;
- Campanhas de informações e educação hidroambiental para mobilizar os diversos segmentos da população;
- Campanhas de envolvimento e mobilização da sociedade civil e setores usuários das águas subterrâneas.

A Gestão das Águas no Brasil é amparada por legislações específicas. Essas bases legais encontram-se presentes na Constituição Federal de 1988, pela Lei 9433 de 1997 e pelo Código das Águas de 1934. No Âmbito Estadual, as respectivas constituições e leis relacionadas à política de recursos hídricos, alicerçam o exercício das competências estaduais, de acordo com o que é previsto pela Constituição de 1988. Esses instrumentos legais serão a seguir comentados num breve histórico sobre a legislação das águas no Brasil.

O marco inicial da utilização das águas subterrâneas para abastecimento público no Brasil foi durante o período Colonial (1500-1822), onde a perfuração só podia ser realizada mediante a autorização central. (Rebouças, 2002). Mesmo após a Proclamação da República em 1889, não havia no Brasil nenhum instrumento legal que dispusesse sobre a utilização dos recursos hídricos. Somente em 1907 foi apresentado o projeto de Lei que dispunha sobre o Código das Águas, marco fundamental ao desenvolvimento hídrico, mas este ficou 27 anos tramitando no Congresso Nacional.

Finalmente, depois de uma série de alterações e incorporações de novas normas jurídicas, em 10 de julho de 1934 sobre o decreto nº 24.643, foi sancionado o Código das Águas no Brasil. No art. 96 o Código das Águas de 1934 estabelece o seguinte em relação às águas subterrâneas: "O dono de qualquer terreno poderá apropriar-se por meio de poços, galerias, etc., das águas subterrâneas que existam debaixo da superfície, contanto que não prejudique aproveitamentos existentes nem derive ou desvie de seu curso na-

tural águas públicas de uso natural, águas públicas dominicais, públicas de uso comum ou particulares", ou seja, as águas subterrâneas eram consideradas um bem de domínio privado.

Com as alterações feitas pela Constituição Federal de 1988 ao Código de Águas de 1934, todas as águas do Brasil passaram a ser de domínio dos Estados ou da União, ou seja, de domínio público, extinguindo o conceito de bem natural privado que era conotado no art. 96 do Código das Águas. Nesta abordagem, a Constituição Federal cita em seu art. 26 que são bens do Estado "as águas superficiais ou subterrâneas, fluentes, emergentes e em depósito, ressalvadas, neste caso, na forma da Lei, as decorrentes de obras da união".

Durante as décadas de 70 e 80, o crescente processo de urbanização no Brasil, requereu uma maior utilização de água e energia. Mesmo com um código de águas, que dispunha sobre o direito de utilização desse recurso, esse código não era passível de combater eficazmente a contaminação das águas e os conflitos de sua utilização, e muito menos promover os meios de uma gestão descentralizada e participativa, uma vez que ele não foi complementado pelas leis e pelos regulamentos nele previstos, em particular ao uso e proteção das águas subterrâneas.

Levando em conta a necessidade de uma legislação mais eficaz no combate ao uso abusivo e descontrolado dos recursos hídricos, é que foi sancionada a Lei Federal 9.433 em 08 de Janeiro de 1997 que dispõe sobre a Política Nacional de Recursos Hídricos. Essa lei organiza o setor de planejamento e gestão de recursos hídricos em âmbito nacional, introduzindo vários instrumentos quais sejam: o Plano de Recursos Hídricos; o Enquadramento dos Corpos de Água em Classes, segundo seus usos preponderantes; A Outorga dos Direitos de Uso dos Recursos Hídricos; A Cobrança pelo uso dos Recursos Hídricos; A Compensação dos Municípios e o Sistema de Informações sobre Recursos Hídricos.

Este instrumento legal é, sem dúvida, atual e importante. Entretanto, por mais que se mencione a gestão integrada das águas, a prática coloca em destaque somente as águas superficiais. A mesma ênfase foi dada nas Constituições Estaduais de 1989, e nas leis correlatas.

Com base nos mesmos princípios e diretrizes da Lei Nacional, onde a água exerce funções naturais sociais e econômicas, sendo seus princípios básicos o uso múltiplo, a bacia hidrográfica como unidade de gestão e a água como valor econômico. É que em 05/11/1997 foi sancionada a Lei Estadual nº 6.945 a qual dispõe sobre a Política Estadual de Recursos Hídricos do Estado de Mato Grosso. Criando também o Conselho Estadual de Recursos Hídricos e os Comitês de Bacias Hidrográficas. Mas, como acontece com a legislação federal, os instrumentos legais de controle de recursos hídricos dão uma ênfase maior no que tange as águas superficiais, mesmo a legislação tratando de uma gestão integrada. Com vistas nesse arcabouço e a fim de subsidiar o gerenciamento desses recursos, é que o Estado de Mato Grosso entendeu que esse problema deveria ser repassado à esfera de administração pública estadual, criando assim uma legislação para o controle de exploração das águas subterrâneas, uma vez que, o seu uso indiscriminado e descon-

trolado já estava se tornando um agravante, com a construção aleatória de poços sem nenhum planejamento ou controle.

Com a aprovação e regulamentação da Lei Estadual nº 8.097 de 24/03/04, a qual dispõe sobre a conservação e administração das águas subterrâneas de domínio do Estado de Mato Grosso, a SEMA através da Superintendência de Recursos Hídricos passou a possuir uma ferramenta de trabalho legal que estabelece procedimentos técnicos visando o seguro acesso aos mananciais subterrâneos e um poder de fiscalização mais eficaz, permitindo a extração dessas águas de forma mais eficiente. Com essa ferramenta legal todos os poços já construídos ou a serem construídos deverão se licenciar/cadastrar junto a essa Secretaria, a qual atua como órgão responsável pela gestão da Política de Recursos Hídricos, informando as características construtivas e hidrodinâmicas dos poços assim como a qualidade de suas águas.

GLOSSÁRIO

Absorção: fixação ou retenção no meio poroso de uma substância contida na água subterrânea, por um conjunto de fenômenos envolvendo a capilaridade, atrações eletrostáticas, reações químicas, etc.

Adsorção: fixação de íons ou moléculas dissolvidas em uma solução no meio poroso (principalmente nas argilas) por cargas elétricas, facilitando trocas iônicas que podem ser de muita importância no ciclo geoquímico.

Ciclos biogeoquímicos: todas as necessidades dos seres vivos, com exceção da energia solar, são supridas pelos recursos da Terra. Se a água, o oxigênio e outros elementos importantes para a vida fossem usados apenas uma vez, rapidamente se esgotariam. Felizmente, muitos processos da natureza operam em ciclos. Existe uma troca constante de elementos entre o ar, a terra, a água, as plantas e os animais, ou seja, entre as várias esferas terrestres; esses processos de reciclagem permitem que os seres vivos obtenham os elementos que necessitam para viver e crescer. Esses ciclos naturais são chamados pelos cientistas de ciclos biogeoquímicos. São exemplos: o ciclo do carbono, o ciclo do nitrogênio, o ciclo do enxofre, o ciclo dos minerais e muitos outros. Importante: os ciclos naturais são relativamente estáveis. As mudanças ocorrem dentro de certos limites, de modo que, apesar de naturalmente ocorrerem variações, essas são pequenas, os ciclos continuam e a vida prossegue. No entanto, muitas atividades humanas estão afetando esses ciclos naturais. Ou seja, a humanidade está perturbando o equilíbrio da natureza, o que pode ter consequências calamitosas.

Cosmo: palavra de origem grega *Kósmos* que significa o Universo, a ordem do Universo, mundo.

Diluição: diminuição da concentração de um contaminante mediante adição da água subterrânea.

Filtração: retenção num meio poroso de partículas em suspensão na água, isto é, separação de contaminantes da água subterrânea retendo-os no solo, sedimento ou rocha, que funcionam como um filtro.

Formação: conjunto de rochas ou de minerais que possuem caracteres mais ou menos parecidos, quer de origem, quer de composição, quer de idade. A formação geológica caracteriza uma idade.

Geomorfologia: ciência que estuda as formas de relevo, tendo em vista a origem, natureza e estrutura das rochas, além do clima da região e das diferentes forças que entram na construção e destruição do relevo terrestre.

Hidrólise: reação da água sobre um composto (no caso um contaminante), com a fixação de íons de hidrogênio (H+) e/ou hidroxila (OH-).

Mitologia: história fabulosa, dos deuses, semideuses e heróis da Antiguidade greco-romana.

Mítico: significa que tem caráter fabuloso, ou que é aceito como verdadeiro por força da tradição. Semelhante a mito, ou da natureza deste.

Mito: a palavra mito vem do grego mythos e quer dizer narração extraordinária de fatos excepcionais. Enquanto narração do mundo grego clássico, desde Hesíodo e Homero, o mito é definido como hieros logos ou narração do sagrado. Há diversas classes de mitos: mitos da criação do mundo ou cosmológico, mitos de renovação, mitos de heróis e de salvadores, mitos sobre a

origem de um povo em que este interpreta a si mesmo simbolicamente. Mas os mitos que se destacam abordam ou narram temas considerados fundamentais como: quem é o homem? Qual sua origem? Sobre o porquê da vida e da morte, sobre a origem do mundo e da sociedade.

Misticismo: crença ou doutrina religiosa dos místicos que tende a considerar a ação de supostas forças espirituais ocultas na natureza e que se manifestam por outras vias que não as vias da experiência comum ou as vias da razão. Ou seja, disposição para crer no sobrenatural.

Místico: significa o homem devoto, religioso, contemplativo, piedoso. Refere-se à vida espiritual e contemplativa.

Percolação: movimento da água no subsolo e as operações de filtrar e extrair substâncias da rocha percolada.

Permeabilidade: é a medida da capacidade de uma rocha ou formação geológica de permitir a passagem de água pelos seus interstícios. Indica a maior ou menor facilidade à passagem da água através da rocha ou formação geológica.

Porosidade: espaços existentes entre as partículas de uma rocha ou solo capazes de armazenar água. Podem ter origem primária (poros das rochas sedimentares) e secundária (fraturas das rochas ígneas e metamórficas).

Precipitação: separação do contaminante da água subterrânea, que se deposita num meio poroso após tornar-se insolúvel sob efeito de um determinado processo.

Religião: significa crença na existência de uma força ou forças sobrenaturais, consideradas como criadoras do Universo e como tais, devem ser adoradas e obedecidas.

Rio Efluente: rio que recebe água da formação geológica.

Rio Influente: rio que doa água para a formação geológica. Rocha: aglomerado natural formado de um ou mais minerais que constitui a crosta terrestre. Não é necessário que o material seja consolidado. De acordo com sua origem pode ser: rocha ígnea, rocha metamórfica e rocha sedimentar.

Rocha Ígnea (ou magmática): rocha produzida pelo resfriamento do material magmático do interior da Terra.

Rocha Metamórfica: rocha que resulta da transformação de uma rocha preexistente. Resultam das condições de pressão e temperatura elevadas.

Rocha Sedimentar: rocha resultante da precipitação química, da deposição de detritos de outras rochas ou do acúmulo de detritos orgânicos préexistentes.

Solução: é o ato ou efeito de dissolver uma solução.

Transformações bioquímicas: reações químicas que ocorrem entre os organismos vivos, a matéria orgânica em decomposição e a água subterrânea.

Transformações geoquímicas: reações químicas que ocorrem entre a formação geológica e a água subterrânea.

Troca catiônica: é a migração iônica espontânea e reversível entre uma solução e os minerais da formação geológica.

Volatização: é o ato ou efeito de reduzir uma substância de uma solução na forma de gás ou vapor.

BIBLIOGRAFIA

ABRÃO, Bernadette Siqueira (org.). (1999). **História da Filosofia**. São Paulo: Editora Nova Cultural (Col. Os Pensadores).

APOITIA, L. F. M., Caracterização Preliminar do Quimismo das Águas Subterrâneas em Cuiabá-MT. Dissertação de Mestrado. UFPR, 2003.

ARAÚJO, L.M.; FRANÇA, A. B. & POTTER, P. E. (1995). Aqüífero Gigante do Mercosul no Brasil, Argentina, Paraguai e Uruguai: **Mapas Hidrogeológicos das Formações Botucatu, Pirambóia, Rosário do Sul. Buena Vista. Misiones e Tacuarembó.** UFPR e PETROBRAS. 16p. Curitiba Brasil.

ARAÚJO, L. M.; FRANÇA, A. B.; POTTER, P. E. (1.999). Hidrogeology of the Mercosul aquifer system in **the Paraná** and Chaco-Paraná Basins. South America and comparison with the Navajo-Nugget aquifer system. USA. Hidrogeology Journal. Vol. 7, N° 3, p. 317-336.

BIGARELLA, J. & SALAMUNI, R. (1961). Early Mesozoic wind patterns as suggested by dune bedding in **the Botucatu Sandstone of Brasil and Uruguay**. Geol Society of America Bulletin. 72, p. 989-1106.

BORGHETTI, N. R. B.; BORGHETTI, J. R. e ROSA FILHO, E. F. (2004). Aqüífero Guarani: a verdadeira integração dos países do mercosul. Curitiba, 214p. ISBN 85-904385-1-1.

BORBA, Ricardo Perobelli, FIGUEIREDO, Bernardino Ribeiro e CAVALCANTI, José Adilson. **Arsênio na água subterrânea em Ouro Preto e Mariana, Quadrilátero Ferrífero (MG)**. Rem: Rev. Esc. Minas, jan./mar. 2004, vol.57, no.1, p.45-51. ISSN 0370-4467.

BRASIL, **Código das Águas**, 1934. Disponível em: httm>

BRASIL, **Constituição da Republica Federativa do Brasil**, 1988. Disponível em:

http://www.planalto.gov.br/ccivil_03/constituicao/constituicao/constituicao.htm

BRASIL, MMA – Ministério do Meio Ambiente, **Política Nacional de Recursos Hídricos**. Lei no 9433 de 08 de

Janeiro de 1997. 2a ed. rev. Atual. Brasília-DF. CHAUÍ, Marilena de S. (1995) **Convite à Filosofia**. 5. ed. São Paulo: Editora Ática.

COSTA, W. D., Legislação de Águas Subterrâneas e Gerenciamento de Aqüíferos. **Anais do XII Encontro Nacional de Perfuradores de Poços e IV Simpósio Brasileiro de Hidrogeologia do Nordeste,** Recife – PE, 2001 p.77-82.

Custódio, Helita Barreira. Legislação Brasileira do estudo de Impacto Ambiental.In: Tauk, S.M; Gobbi,N. &Fowler,H. G.(org.). **Análise Ambiental: uma visão multidisciplinar**. Editora UNESP. FAPESP, FUNDUNESP, 1991.

DALY, Hermann. Beyond Growth - The Economics of Sustainable Development. Beacon Press, Boston, 1996.

DORES, E. F. G. C. Contaminação de águas superficiais e subterrâneas por pesticidas em Primavera do Leste, Mato Grosso. 2004. 281 p. Tese (Doutorado em Química) - Instituto de Química, Universidade Estadual Paulista, Araraquara, 2004.

FAO, 2002. Meat and Meat Products. FAO Food Outlook n° 4 (October, 2002).

FAO: World agriculture: towards 2015/2030. Summary Report. 2002.

FEMA – FUNDAÇÃO ESTADUAL DO MEIO AMBIENTE. 1997. **Plano Estadual Ambiental**. Cuiabá –MT.

Ferreira et al. 1994. A Desertificação no Nordeste do Brasil: Diagnóstico e Perspectiva. UFPI, Núcleo DESERT. Disponível em: http://www.mma.gov.br/port/redesert/tab4test.htm/

FRAGA, G. C. J. & LISBOA, A. A. (1990). A origem do flúor nas águas subterrâneas da Bacia do Paraná: análise introdutória. In: **Anais do VI Congresso Brasileiro de Águas Subterrâneas**. Porto Alegre. P. 98-106.

FREEZY, R. A.; CHERRY, J. A. **Groundwater**. Englewood Cliffs: Prentice Hall, 1979. 604 p.

FULFARO, V. J. (1971). Evolução Tectônica e Paleogeografia da Bacia Sedimentar do Paraná pelo Trend Surface Analysis. Tese de Livre Docência, Escola de Engenharia de São Carlos, Universidade de São Paulo. Geol. 14, 112p.

FULFARO, V. J. & PERINOTTO, J. A J. (1996). A Bacia Bauru: Estado da Arte. In: **IV Simpósio Sobre o Cretáceo do Brasil**. Rio Claro, UNESP, p. 297-303.

International Food Policy Research Institute. Livestock to 2020: The Next Food Revolution (Delgado, Christopher, et al.) Washington, DC. USA. 1999.

HILEMAN, B. Environmental estrogens linked to reproductive abnormalities, cancer. Chem. Eng. News, v. 72, n. 5, p. 19-23, 1994.

KIMMELMANN, A. A.; REBOUÇAS, A. C.; SOUZA, J. C. S.; REBOUÇAS, A. M.; BASTOS, F. F. W.; HEINE, C. A. (1990). Considerações sobre as anomalias de fluoreto no sistema aqüífero Botucatu Pirambóia na bacia do Paraná. In: Anais do 6º Congresso Brasileiro de Águas Subterrâneas. V. 1, p. 107-111. Porto Alegre.

LAABS, V.; AMELUNG, W.; PINTO, A.; ALTSTAEDT, A.; ZECH, W. Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian cerrados. **Chemosphere**, v. 41, p. 1441-1449, 2000.

LACERDA FILHO, J. V. de; ABREU FILHO, W.; VALENTE, C. R.; OLIVEIRA, C. C. de e ALBUQUERQUE M. C. (2004). Geologia e Recursos Minerais de Mato Grosso. **Programa Integração, Atualização e Difusão de Dados da Geologia.** Esc. 1:1000.000. Goiânia: CPRM, 2004. (Convênio CPRM/ SICME). 200p. il.; + mapas.

LANNA, A. E., Bases Conceituais da Gestão das Águas. Apostila do Curso de Especialização em Gestão de Recursos Hídricos. UFRGS. Setembro de 1998.

LANNA, A. E., Economia dos Recursos Hídricos. **Apostila do Curso de Especialização em Gestão de Recursos Hídricos.** UFRGS. Março de 2000.

LEINZ, V. & SALLENTIEN, B. (1962). Água Subterrânea no Estado de São Paulo e regiões limitrofes. **Boletim da Sociedade Brasileira de Geologia**. 11(1), p. 27-36. São Paulo.

MAACK, R. (1970). **Notas preliminares sobre as águas subterrâneas do subsolo da Bacia do Paraná-Uruguai**. Curitiba. Comissão Interestadual da Bacia do Paraná-Uruguai.

McFARLAND, J. E. **Hormone disrupters, environmental estrogens, and pesticides.** 1996. Disponível em: http://www.vtpp.ext.vt.edu:1080/enest2jm.html>.

Marques, J.F. e Pazzianotto, C.B., 2004. Custos econômicos da erosão do solo: estimativa pelo método do custo de reposição de nutrientes. Simulação do custo econômico da erosão do solo. **Comunicado Técnico 23**. EMBRAPA Meio Ambiente. Jaguariúna, SP.

MATO GROSSO, Lei Estadual de Águas Subterrâneas. Lei n° 8.097 de 24 de Março de 2004. Cuiabá-MT.

MATO GROSSO, **Política Estadual de Recursos Hídricos**. Lei nº 6945 de 05 de Novembro de 1997. 2ª ed. revisada de atualizada. Cuiabá-MT.

Meliá, Bartolomeu. A experiência religiosa Guarani. In: Marzal, M.M. (org.). **O rosto índio de Deus**. Trad. Jaime S. Clasen. São Paulo. Ed. Vozes, 1989.

MURCK B. W.; SKINNER B. J.; PORTER S. C. (1.995). Environmental Geology. John Wiley & Sons, Inc. Printed United States of America, (ISBN 0-471-30356-9), 535p.

NASA – National Aeronautics and Space Administration 2006: Disponível em: http://www.nasa.gov

Nierenberg, Danielle & Garcés, Leah. Produção Animal Industrial: a próxima crise global de saúde? **Relatório elaborado pela Sociedade Mundial de Proteção Animal WSPA para o Fórum Global de Pesquisa em Saúde** – Organização Mundial de Saúde – OMS – Cidade do México – México, 2004.

Nimuendaju, Curt. **As lendas da criação e destruição do mundo**. São Paulo: HUCITEC – EDUSP, 1987.

ONU, 1997 PNUD. Relatório das Nações Unidas – Índice de Desenvolvimento Humano, ONU, 1997.

ORGANIZACIÓN MUNDIAL DE LA SALUD. **Criterios** relativos a la salud y otra información de base. Ginebra, 1987. 350 p. (Guías para la calidad del agua potable, v. 2).

Os Pré-Socréaticos (1999). **Fragmentos, Doxografia e Comentários**. São Paulo: Editora Nova Cultural (Col. Os Pensadores).

PNUD Programa das Nações Unidas para o Desenvolvimento. Projeto do Milênio das Nações Unidas 2005. Investimento no desenvolvimento: UM plano prático para atingir os Objetivos de Desenvolvimento do Milênio. Visão Geral.

RAMOS, A. C. (1970). Aspectos páleo-estruturais da Bacia do Paraná e sua influência na sedimentação. **Boletim Técnico da PETROBRAS**. Vol. 13, N° 3-4, p. 85-93.

REBOUÇAS, A. C. (1976). **Recursos hídricos subterrâneos** da Bacia do Paraná: Análise de Pré Viabilidade. Tese de Livre Docência. Instituto de Geociências. Universidade de São Paulo. 147p.

REBOUÇAS, A. C. (1988). **Groundwater in Brazil**. Episodes. Vol. 11, N° 3, p. 209-214.

REBOUÇAS, A.C. A Política Nacional de Recursos Hídricos e as Águas Subterrâneas Revista da Associação Brasileira de Águas Subterrâneas – **Revista da Associação Brasileira de Águas Subterrâneas - ABAS**. Maio/2002. N°16. pp. 83-95.

Ribeiro, Joaquim Corrêa & Salomão, Fernando Ximenes de Tavares. Abordagem Morfopedológica aplicada ao diagnóstico e prevenção de processos erosivos na bacia hidrográfica do alto rio do Casca, MT. **Revista Geociências**, Vol. 22 n° 1, p.83-95. São Paulo Ed. UNESP, 2003.

ROCHA, G. A. (1997). O grande manancial do cone sul. In: **Revista de Estudos Avançados**, Universidade de São Paulo, 11 (30) P. 191-212.

ROSA FILHO, E. F., HINDI, E. C., ROSTIROLLA, S. P., FERREIRA, F. J. F. e BITTENCOURT, A. V. L. (2003). Sistema Aqüífero Guarani – Considerações Preliminares Sobre a Influência do Arco de Ponta Grossa no Fluxo das Águas Subterrâneas. **Revista da Associação Brasileira de Águas Subterrâneas**, Nº 17, P. 91-111, São Paulo.

ROSA FILHO (2005). Caracterização Hidroquímica do Aqüífero Guarani na Porção Centro-Norte do Estado do Paraná, Brasil. **Revista da Associação Brasileira de Águas Subterrâneas**, v. 19, n. 1, 87-94, São Paulo.

Sagan, C. **Bilhões e Bilhões.** Companhia das Letras. São Paulo, 1998.

SALOMÃO, F.X DE T. MADRUGA, E DE L.; MARTINEZ, E.M.G.; ALA FILHO, J.DE O.; MADRUGA, L.C. E ARIMA,L. I. DE A. Diretrizes para o uso Sustentável do Entorno do Parque Nacional de Chapada dos Guimarães. - **RELATÓRIO TÉCNICO FINAL**. EDITAL FNMA / PROBIO N° 03/2001. UFMT – IPEM. 2002.

SECRETARIA DO MEIO AMBIENTE – SP(1997): **Conceitos para se fazer educação ambiental**. Série Educação Ambiental, 112p, São Paulo.

SEDTUR – Secretaria de Desenvolvimento do Turismo de Mato Grosso. (2005). Disponível em: http://www.sedtur.mt.gov.br/principal.

SEPLAN – Secretaria de Estado de Planejamento (2004). Perfil Sócio-Econômico de Mato Grosso. Disponível em: < http://www.seplan.mt.gov.br>.

SIDRA - IBGE – Sistema IBGE de Recuperação Automática - Instituto Brasileiro de Geografia e Estatística (2005). Disponível em: http://www.sidra.ibge.gov.br.

SOARES, P. C. (1975). Divisão estratigráfica do Mesozóico no estado de São Paulo. **Revista Brasileira de Geologia**. Vol. 5, Nº 4, São Paulo.

SOUZA, V.; CARBO, L.; DORES, E. F. G. C.; RIBEIRO, M. L.; VECCHIATO, A. B. WEBER, O. L. S.; PINTO, A. A.; SPADOTTO, C. A.; CUNHA, M. L. F. Determinação de pesticidas em água de poços tubulares em áreas de cultura de algodão aa Microrregião de Primavera do Leste, Mato Grosso. In: CONGRESSO BRASILEIRO DE ÁGUAS SUBTERRÂNEAS, 13., 2004, Cuiabá. Anais ... São Paulo: Associação Brasileira de Águas Subterrâneas, 2004.

Spirn, Anne Whiston. **O Jardim de granito: A Natureza no Desenho da Cidade**. Trad. Paulo Renato Mesquita Pellegrino. São Paulo. Editora da Universidade de São Paulo, 1995.

SUERTEGARAY, D.M.A. 1987. A trajetória da natureza: um estudo geomorfológico sobre areias de Quarai, RS. (Tese de Doutoramento em Geografia Física) – Curso de Pós-Graduação em Geomorfologia. Universidade de São Paulo. São Paulo, SP, 243p.

SUERTEGARAY, D.M.A. 1998. **Deserto Grande do Sul: Controvérsia**. Editora da Universidade, UFRGS, Porto Alegre, RS 2ª edição, 108 p.

The Open University (2000). **Os Recursos Físicos da Terra** – **Recursos Hídricos**. Editora da Unicamp. Campinas, Bloco 4.

TEIXEIRA, W.; TOLEDO, M.C.M.de; FAIRCHILD, T.R. e TAIOLI F. (2000). **Decifrando a Terra**. São Paulo, Edusp, Oficina de Textos, 558pp.

VECCHIATO, A.B. & DORES, E. F. G. C. Contaminação dos recursos hídricos por agrotóxicos. In: **Coletânea Geológica**. 1^a ed. Cuiabá, MT EdUFMT/LENIFY, 2006, v.3, p. 79 – 104.

VOLPATITO, R. **Cruzada Guarani**. Disponível em: http://www.rosanevolpatto.trd.br/lendacruzadaguarani1t.htm

